The conversion factors in the following table are derived by the physical constants of:
Light speed in vacuum: $c = 299\ 792\ 458\ \texttt{m}\cdot \texttt{s}^{\texttt{-1}} $ ;
Planck constant: $ h = 6.626\ 070\ 15 \times 10^{-34}\ \texttt{J}\cdot \texttt{s} $ ;
Ideal gas constant: $R = 8.314\ 462\ 618\ \texttt{J}\cdot \texttt{mol}^{\texttt{-1}}\cdot \texttt{K}^{\texttt{-1}} $ ;
Avogadro's constant: $N_A = 6.022\ 140\ 76 \times 10^{23}\ \texttt{mol}^\texttt{-1}$ ;
Elementary charge: $ e = 1.602\ 176 \ 634 \times 10^{-19}\ \texttt{C} $ .
These values should be consistent with the NIST Reference.
Energy Conversion Table | ||||||||
\ | hartree | eV | cm-1 | kcal/mol | kJ/mol | °K | J | Hz |
hartree | 1 | 27.211 386 246 | 219474.63 | 627.509 474 | 2625.5 | 315775.0 | 4.359 744 72 ×10-18 | 6.579 683 92 ×10+15 |
eV | 0.036 749 3 | 1 | 8065.54 | 23.060 548 | 96.485 332 | 11604.5 | 1.602 176 63 ×10-19 | 2.417 989 24 ×10+14 |
cm-1 | 4.556 335 25 ×10-06 | 1.239 841 98 ×10-04 | 1 | 0.002 859 14 | 0.011 962 7 | 1.438 777 | 1.986 445 86 ×10-23 | 2.997 924 58 ×10+10 |
kcal/mol | 0.001 593 60 | 0.043 364 1 | 349.755 | 1 | 4.184 | 503.220 | 6.947 695 46 ×10-21 | 1.048 539 38 ×10+13 |
kJ/mol | 0.000 380 88 | 0.010 364 3 | 83.593 47 | 0.239 006 | 1 | 120.272 4 | 1.660 539 07 ×10-21 | 2.506 069 25 ×10+12 |
°K | 0.000 003 166 81 | 0.000 086 173 3 | 0.695 035 | 0.001 987 20 | 0.008 314 46 | 1 | 1.380 649 00 ×10-23 | 2.083 661 91 ×10+10 |
J | 2.293 712 28 ×10+17 | 6.241 509 07 ×10+18 | 5.034 116 57 ×10+22 | 1.439 326 19 ×10+20 | 6.022 140 76 ×10+20 | 7.242 970 52 ×10+22 | 1 | 1.509 190 18 ×10+33 |
Hz | 1.519 829 85 ×10-16 | 4.135 667 70 ×10-15 | 3.335 640 95 ×10-11 | 9.537 076 27 ×10-14 | 3.990 312 71 ×10-13 | 4.799 243 07 ×10-11 | 6.626 070 15 ×10-34 | 1 |
Calorie, or more specifically, thermochemical calorie, is defined as an exact number of $4.184\ \texttt{joule}$, i.e.
$$1\ \texttt{cal} \equiv 4.184\ \texttt{J}$$
The conversion between mass $m$ and energy $E$, is
$$ E = mc^2 $$
where $m$ is the mass, and light speed in vacuum $c$ is $299\ 792\ 458\ $ meter per second ($\texttt{m}\cdot \texttt{s}^{\texttt{-1}}$). In addition,
$$ E = h\nu = h\frac{c}{\lambda} $$
where $\nu$ is frequency (in the unit of hertz, $\texttt{Hz}$ or $\texttt{s}^{\texttt{-1}}$), $\lambda$ is wavelength, and $h$ is Planck constant, $6.626\ 070\ 15 \times 10^{-34}\ \texttt{J}\cdot \texttt{s}$.
The energy of $1\ \texttt{Hz}$ (or $1\ \texttt{s}^\texttt{-1}$), is then equivalent to
$$ E = h\nu = ( 6.62607015 \times 10^{-34}\ \texttt{J}\cdot \texttt{s} ) \times ( 1\ \texttt{s}^\texttt{-1} ) = 6.62607015 \times 10^{-34}\ \texttt{J} = 6.62607015 \times 10^{-31}\ \texttt{kJ} $$
Note that the unit $\texttt{J}$ here, is the energy in the unit of $\texttt{joule per particle}$ (or $\texttt{ per atom}$, or $\texttt{ per molecule}$, depending on the system being described). Multiplied by the Avogadro's constant $N_A,\ 6.022\ 140\ 76 \times 10^{23}\ \texttt{mol}^\texttt{-1}$, we have the energy conversion of $1 \ \texttt{Hz} $ to $3.990\ 312\ 712 \times 10^{-10} \ \texttt{J}\cdot \texttt{mol}^{\texttt{-1}} $ ($\texttt{joule per mole}$) or $3.990\ 312\ 712 \times 10^{-13} \ \texttt{kJ}\cdot \texttt{mol}^{\texttt{-1}} $ ($\texttt{kilojoule per mole}$) as:
$$ \begin{align} E & = (6.62607015 \times 10^{-34}\ \texttt{J}) \times (6.02214076 \times 10^{23}\ \texttt{mol}^\texttt{-1}) \\
& = 3.990312712 \times 10^{-10} \ \texttt{ J}\cdot \texttt{mol}^{\texttt{-1}} \\
& = 3.990312712 \times 10^{-13} \ \texttt{kJ}\cdot \texttt{mol}^{\texttt{-1}}
\end{align} $$
Further divided by $4.184$, it is $\ 9.537\ 076\ 272 \times 10^{-14} \ \texttt{kcal}\cdot \texttt{mol}^{\texttt{-1}} $ ($\texttt{kilocalorie per mole}$).
The multiplicative inverse (reciprocal) of wavelength, $\lambda^{-1}$, is another frequently used equivalence to energy in atomic and molecular spectroscopy. The reciprocal of centimeter, $\texttt{cm}^\texttt{-1}$, is defined as $\texttt{wavenumber}$ and intepreted as number of waves per centimeter. In that sense, energy with $1\ \texttt{Hz}$ of frequency is equivalent to $3.335\ 640\ 951 \times 10^{-11}\ \texttt{cm}^{\texttt{-1}}$, by $$ E = h\nu = h\frac{c}{\lambda} $$ $$ \frac{1}{\lambda} = \frac{\nu}{c} = \frac{ 1\ \texttt{s}^{\texttt{-1}} }{ 299792458 \times 10^2\ \texttt{cm}\cdot \texttt{s}^{\texttt{-1}} } = 3.335640951 \times 10^{-11}\ \texttt{cm}^{\texttt{-1}}$$
The gas constant $R$, is $8.314\ 462\ 618\ \texttt{J}\cdot \texttt{mol}^{\texttt{-1}}\cdot \texttt{K}^{\texttt{-1}} $ (or $0.082\ 057\ 338\ \texttt{L}\cdot \texttt{atm}\cdot\texttt{mol}^{\texttt{-1}}\cdot \texttt{K}^{\texttt{-1}} $). Divided by the Avogadro's constant $N_A$, we have: $$ \frac{R}{N_A} = \frac {8.314462618\ \texttt{J}\cdot \texttt{mol}^{\texttt{-1}}\cdot \texttt{K}^{\texttt{-1}}}{6.02214076 \times 10^{23}\ \texttt{mol}^\texttt{-1}} = 1.380649\times 10^{-23}\ \texttt{J}\cdot \texttt{K}^{\texttt{-1}} = k_B $$ $k_B$ is the Boltzmann constant. We can say that $R$ is used to describe the properties of 1 $\texttt{mol}$ of gas, while $k_B$ is used to describe the properties of one single gas molecule. By the relation of $$ E = k_B T $$ where $T$ is temperature in the unit of Kelvin $(\texttt{K})$, we can express the energy equivalence in the unit of absolute temperature. Electromagnetic wave with $1\ \texttt{Hz}$ of frequency is then converted to $4.799\ 243\ 073 \times 10^{-11}\ \texttt{K} $ via: $$ T = \frac{E}{k_B} = \frac {6.62607015 \times 10^{-34}\ \texttt{J}}{1.380649\times 10^{-23}\ \texttt{J}\cdot \texttt{K}^{\texttt{-1}}} = 4.799243073 \times 10^{-11}\ \texttt{K} $$
The electron volt ($\texttt{eV}$) is one of the units of energy defined by the amount of energy gain or lost by the charge of one single electron moved across an electric potential difference of 1 $\texttt{volt}$. Since that 1 $\texttt{volt}$ = 1 $\texttt{J}\cdot \texttt{C}^{\texttt{-1}}$ ($\texttt{joule per coulomb}$) and the charge of the electron is $-1.602\ 176 \ 634 \times 10^{-19}\ \texttt{C}$, we have $$ 1\ \texttt{eV} = (1.602176634 \times 10^{-19}\ \texttt{C}) \times (1\ \texttt{J}\cdot \texttt{C}^{\texttt{-1}}) = 1.602176634 \times 10^{-19} \texttt{J}\ \ (\texttt{joule per electron}) $$ Multiplied by the Avogadro's constant $N_A$, $$ 1\ \texttt{eV} = \frac{(1.602176634 \times 10^{-19}\ \texttt{J}) \times (6.02214076 \times 10^{23}\ \texttt{mol}^\texttt{-1})}{10^3} = 96.485332\ \texttt{kJ} \cdot \texttt{mol}^\texttt{-1} $$
The $\texttt{hartree}$ energy (named after Douglas Rayner Hartree), also denoted as $\texttt{Eh}$ or atomic unit in energy ($\texttt{a.u.}$), is a large unit in energy frequently used in computational chemistry. It is suggested by NIST CODATA (2018) with a conversion factor of:
$$ 1\ \texttt{hartree} = 27.211\ 386\ 245\ 988\ (53)\ \texttt{eV} $$
Energy Conversion Table | ||||||||
---|---|---|---|---|---|---|---|---|
|
hartree | eV | cm-1 | kcal/mol | kJ/mol | oK | J | Hz |
hartree | 1 | 27.2107 | 219 474.63 | 627.503 | 2 625.5 | 315 777. | 43.60 x 10-19 | 6.57966 x 10+15 |
eV | 0.0367502 | 1 | 8 065.73 | 23.060 9 | 96.486 9 | 11 604.9 | 1.602 10 x 10-19 | 2.418 04 x 10+14 |
cm-1 | 4.556 33 x 10-6 | 1.239 81 x 10-4 | 1 | 0.002 859 11 | 0.011 962 7 | 1.428 79 | 1.986 30 x 10-23 | 2.997 93 x 10+10 |
kcal/mol | 0.001 593 62 | 0.043 363 4 | 349.757 | 1 | 4.18400 | 503.228 | 6.95 x 10-21 | 1.048 54 x 10+13 |
kJ/mol | 0.000 380 88 | 0.010 364 10 | 83.593 | 0.239001 | 1 | 120.274 | 1.66 x 10-21 | 2.506 07 x 10+12 |
oK | 0.000 003 166 78 | 0.000 086 170 5 | 0.695 028 | 0.001 987 17 | 0.008 314 35 | 1 | 1.380 54 x 10-23 | 2.083 64 x 10+10 |
J | 2.294 x 10+17 | 6.241 81 x 10+18 | 5.034 45 x 10+22 | 1.44 x 10+20 | 6.02 x 10+20 | 7.243 54 x 10+22 | 1 | 1.509 30 x 10+33 |
Hz | 1.519 83 x 10-16 | 4.135 58 x 10-15 | 3.335 65 x 10-11 | 9.537 02 x 10-14 | |
4.799 30 x 10-11 | 6.625 61 x 10-34 | 1 |