Technical Support Information
Last update: 27 September 2006

 

Overlay 10

5 6 7 8 9 10 11 13 14 15 16 17 18 19 20 21 22 28 29 30 31 32 45 46 47 48 60 61 62 63 72 72 74 75 76 77 79

IOp(10/5)

CALCULATION OF FIRST DERIVATIVES OF POST-SCF ENERGIES. Only implemented for closed-shell and

UHF.

0        NO

1        CALC. D E(MP2) / D R

2        CALC. D E(CID) / D R

3        CALC. D E(CISD) / D R

4        Calc. D E(CIS) / D R

5        Calc. D E(CCD) / D R

6        Calc. D E(CCSD/QCISD) / D R

7        Calc. D E(BD) / D R

8        Calc. D E(MP3) / D R

9        Calc. D E(MP4) /D R

00       Default CPHF usage (Z-vector unless HF D2E)

10       Full 3*NAtoms CPHF.

20       Z-Vector method.

30       Test Z-Vector using full CPHF.

000     Default derivative processing - just set up here unless doing HF 2nd derivatives simultaneously.

100     Compute F1 and S1 derivative terms here.

200     Don't process any derivative terms here. Setup for external processing of W and Z.

IOp(10/6)

Calculation of the second derivatives of the SCF energy. Available for RHF and UHF. Partially coded but NYI for high-spin ROHF.

0        No.

1        Yes, do D2 E(SCF) / D R(I) D R(J)

2        Setup For MP2 2nd Derivatives (i.e. No contributions to the force constants are done here).

00      Default: use new Px/Wx digestion code if possible, save as little data as possible.

10      Use old Px/Wx digestion code.

20      Use new Px/Wx code but save both S1 and F1 over MOs.

30      Use new Px/Wx code and don't save S1 but do save F1.

100     Compute dipole derivatives using only electric field CPHF and F(x) matrices.

200      Compute dipole-dipole, dipole-quadrupole, and OR tensors.

300      Combination of 100 and 200.

1000   Set up for GIAO MP2 calculation.

10000  Do DFT 3rd derivatives.

20000  Do hyperpolarizabilities for second-harmonic generation.

IOp(10/7)

RMS CONVERGENCE ON C1(I,A) contributions. The max element is tested against 10* this value.

0        Default: 1.D-9, except 1.D-11 for Z-Vector CPHF.

N       1.D-N.

IOp(10/8)

Selection of linear equation solution method.

0        Default (same as 2).

1        Expand each variable in a separate expansion space.

2        Solve all equations together, possibly reverting to the old (one variable at a time) method in the secondary solution.

3        Invert the A matrix directly.

IOp(10/9)

Whether to compute Born-Oppenheimer corrections.

0        No.

1        Yes.

IOp(10/10)

Control of CPMCSCF during avoided crossing/conical intersection searches.

IOp(10/11)

Largest matrix for direct inversion in LinEq2.

0        Default invert directly if there is enough memory.

-1      Always use DIIS, never invert directly.

N       N.

IOp(10/13)

The nature of the perturbation(s).

0        Default (1st order nuclear and electric field).

IJKL  Nuclear Lth order. Electric field Kth order. Magnetic Field Jth order. Nuclear magnetic moment Ith order.

IOp(10/14)

Whether to update dipole and polarizability derivatives.

0        Default (yes if IOp(5).eq.0).

1        Update dipole.

2        Don't update dipole

10      Update polarizability.

20      Don't update polarizability.

100    Force 2nd order cphf for polarizability derivatives.

IOp(10/15)

What to do with expansion vectors from the linear equations.

0        Default (=1 if IOp(8)=1 and electric field only and no derivatives are being computed, =2 otherwise).

1        Save vectors at end.

2        Delete vectors at end of each CPHF.

3        Pass vectors from 1st to 2nd order CPHF, but delete at end of link.

00      Default (Use old vectors if available).

10      Use old vectors if available.

20      Ignore old vectors.

Note that because of numerical instabilities in the simultaneous solution method, reusing old expansion vectors for new B vectors can reduce accuracy. This may be acceptable in the electric field second order CPHF, which is used only for one term in polarizability derivatives and for which the accuracy requrirements are less stringent, but use of electric field expansion vectors for nuclear coordinate CPHF can cause errors of up to 1 cm**-1 with current tolerances. This option is normally used to pass 1st order electric field results to the second invokation of 1002 during frequency calculations.

IOp(10/16)

Convergence in secondary linear equations (only for simultaneous solution).

0        Use standard machine tolerance (MDCutO) on maximum and rms.

N       Convergence is 10**(-N) for max and rms.

IOp(10/17)

Frozen-core:

0        Default (use AO 2PDM for Lagrangian only if orbitals are frozen in /Orb/).

1        Do C1, C2, S1, and S2 off the AO 2PDM.

2        Convert /Orb/ to full, for debugging frozen-core with integrals over the full window.

3        Save as 2, but leave the full version of /Orb/ on the disk.

IOp(10/18)

Whether to do correct or approximate CPHF.

0        CPHF is done correctly.

1        The A-matrix is neglected, and hence the U-matrices are set equal to the B-matrices
          (i.e., uncoupled Hartree-Fock is used).

2        The U-matrices are set to zero.

3        Only a single set of products AX are computed, independent of convergence criteria.
          Simultaneous solution is implied.

IOp(10/19)

Whether overlap (S1) terms must be included.

0        Default (yes).

1        Yes.

2        No.

Note that the appropriate rwf (588) must be present in any case.

IOp(10/20)

How to handle 2e integral contributions:

0             Default (decide on the fly).

1             Read the 2e integral files, MO if possible.

2             Compute the 2e integrals when needed.

3             Force use of AO integrals, even if MO ones are available, i.e. force AO or direct.

4             Don't use <IA||BC> integrals, even if present.

MNx      Use option MN in control of 2e integral calculation.

IOp(10/21)

Whether to store Uai, Spq, and full MO Fock matrix derivatives in permanent rwfs.

0        Default (No).

1        Yes. Disables use of symmetry to reduce the size of the CPHF problem here.

2        No.

10      Save magnetic MO deriviatives.

IOp(10/22)

Which multipole (electric field) perturbations to include? Only used if J part of IOp(13) is non-zero.

0        Default. Uniform electric field (dipole) only.

1        Dipole (uniform electric field).

2        Quadrupole (electric field gradient, all 6 cartesian components.

3        Octopole.

4        Hexadecapole.

IOp(10/28)

State for CPMCSCF:

0        Default (ground state).

N       Nth excited state.

IOp(10/29)

Use of rafinetti integrals during direct SCF.

-N      All integrals done as Raffenetti if there are N or more matrices; all as regular if there are less than N.

0        Default: let FoFDir decide.

1        All integrals are done as regular integrals.

N       Integrals with degree of contraction greater than or equal to N are done are regular integrals.

IOp(10/30)

In-core storage of 2e integrals:

0        Default - do if possible in direct calculation.

1        Force in-core storage; recover ints if available on rwf 610.

2        Force recomputation.

IOp(10/31)

Whether to use symmetry to reduce the number of CPHF equations:

0        Default (yes).

1        No.

2        Yes.

IOp(10/32)

Whether to apply interchange in link 1004:

0        Default (No).

1        Yes.

2        No.

Whether to read D2E file in link 1003:

0        Default (No).

1        Yes.

2        No.

IOp(10/45)

Type of Gauge Transformations to perform to calculate the current distribution within the molecule, and hence the molecule's other magnetic properties.

-1       None.

0        Default (16 if doing magnetic CPHF).

1        Use single gauge origin - the gauge used to calculate the angular momentum perturbed wavefunctions.

2        Use IGAIM method - gauge origin coincident with the nucleus of the integrated atomic regions.

4        Use CSGT method.

8        Use single gauge origin - the coordinates of which are read in (in Angstroms).

16      Use GIAOs.

IOp(10/46)

Whether to calculate dipole and rotational strengths (VCD).

0        No (Default)

1        Yes

2        No

3        Do only optical rotational strength.

IOp(10/47)

Whether to do spin-spin coupling constants.

0        Default (No)

1        Yes.

2        No.

3        Just do the Fermi-contact contribution.

4        Yes, but do not print/store the Fermi-Contact contribution. (This assumes that the FC term was done in a previous job step)

IOp(10/48)

Whether to operate only over perturbations involving active atoms.

0        Default (For nuclear, compress if overlay 11 did).

1        Compress.

2        Don't compress.

3        Don't compress, but blank contributions for inactive atoms.

4        Compress and store force constants only over active atoms (for ONIOM(MO:MM) Opt=CalcFC with microiterations).

10      Read a list of atoms to include in perturbations.

IOp(10/60-62)        

Over-ride standard values of IRadAn, IRanWt, and IRanGd.

The default for IOp(60) here is -3, two steps down from default.

IOp(10/63)

Changing defaults.

0        Default: Use FMM if turned on globally, use more aggressive cutoffs in Xc integration,
          use more aggressive cutoffs in integrals and FMM unless doing NFx.

1        Turn off FMM here regardless.

2        Use FMM if turned on globally.

3        Turn FMM on here regardless.

10      Use global cutoffs.

20      Use local, lower cutoffs suitable only for CPHF/CPKS.

100    Turn off FoFCou as well as FMM.

IOp(10/72)

Whether to do frequency-dependent properties:

0        Default (No, unless both electric and magnetic properties are requested).

1        No.

2        Yes.

3        Yes, read in frequencies.

4        Yes, with formalism for frequency-dependent XC response.

00       Update frequency-dependent property file if frequency-dep. calculation is performed.

10       Update regardless.

20       Do not update.

IOp(10/73)

Maximum number of CPHF cycles.

0        Default (1000).

N       N.

IOp(10/74)

Whether to do non-equilibrium solvation.

0        Default: Only if frequency-dependent.

1        Yes.

2        No.

IOp(10/75)

Print during NMR.

0        Default (1).

1        Print tensors and eigenvalues.

2        Print eigenvectors as well.

IOp(10/76)

Over-ride general choice of exchange-correlation frequency dependence.

0        Use global value for this job step.

N       Use type N (see IOp(88) in overlay 5).

IOp(10/77)

Test CPHF results by checking the CPHF equations using the complete MO Fock and density derivatives.

0        Default (No).

1        Yes.

2        No.

IOp(10/79)

Stop the link at selected points, for testing restarts.

MNN        Stop at pass M (default 1), restart point NN.