Next: C..37 THGFCFO: Up: C. Density functional descriptions Previous: C..35 TH4:


C..36 THGFC:

Density and gradient dependent first row exchange-correlation functional for closed shell systems. Total energies are improved by adding $DN$, where $N$ is the number of electrons and $D=0.1863$. See reference [25] for more details.

\begin{dmath}
t=[7/6,4/3,3/2,5/3,4/3,3/2,5/3,{\frac {11}{6}},3/2,5/3,{\frac {11}{6}},
2]
,\end{dmath}

\begin{dmath}
v=[0,0,0,0,1,1,1,1,2,2,2,2]
,\end{dmath}

\begin{dmath}
\omega=[- 0.864448, 0.565130,- 1.27306, 0.309681,- 0.287658, 0.588...
...0.252700, 0.0223563, 0.0140131,- 0.0826608, 0.0556080,- 0.00936227]
,\end{dmath}

\begin{dmath}
n=12
,\end{dmath}

\begin{dmath}
R_{{i}}= \left( \rho \left( a \right) \right) ^{t_{{i}}}+ \left( \rho
\left( b \right) \right) ^{t_{{i}}}
,\end{dmath}

\begin{dmath}
X_{{i}}=1/2\,{\frac { \left( \sqrt {\sigma \left( {\it aa} \right)...
...ft( {\it bb} \right) }
\right) ^{v_{{i}}}}{{\rho}^{4/3\,v_{{i}}}}}
,\end{dmath}

\begin{dmath}
f=\sum _{i=1}^{n}\omega_{{i}}R_{{i}}X_{{i}}
,\end{dmath}

\begin{dmath}
G=\sum _{i=1}^{n}1/2\,{\frac {\omega_{{i}} \left( \rho \left( s
\...
...ft( {\it ss}
\right) } \right) ^{v_{{i}}}}{{\rho}^{4/3\,v_{{i}}}}}
.\end{dmath}



molpro@molpro.net
Sep 24, 2008