

Intel® MPI Library for Linux* OS

Reference Manual

Copyright © 2003–2014 Intel Corporation

All Rights Reserved

Document Number: 315399-011

World Wide Web: http://www.intel.com

ii

Contents
1. Introduction .. 3

1.1. Introducing Intel® MPI Library ... 3

1.2. Intended Audience .. 3

1.3. What's New .. 3

1.4. Notational Conventions .. 4

1.5. Related Information .. 4

2. Command Reference .. 5

2.1. Compiler Commands ... 5

2.1.1. Compiler Command Options .. 6

2.1.2. Configuration Files .. 10

2.1.3. Profiles ... 10

2.1.4. Environment Variables .. 11

2.2. Simplified Job Startup Command .. 14

2.3. Scalable Process Management System (Hydra) Commands .. 17

2.3.1. Global Options ... 18

2.3.2. Local Options ... 28

2.3.3. Extended Device Control Options .. 29

2.3.4. Environment Variables .. 30

2.3.5. Cleaning up Utility .. 40

2.3.6. Checkpoint-Restart Support ... 42

2.4. Intel® Xeon Phi™ Coprocessor Support .. 49

2.4.1. Usage Model .. 49

2.4.2. Environment Variables .. 50

2.4.3. Compiler Commands ... 54

2.5. Multipurpose Daemon Commands .. 55

2.5.1. Job Startup Commands ... 63

2.5.2. Configuration Files .. 83

2.5.3. Environment Variables .. 84

2.6. Processor Information Utility ... 88

3. Tuning Reference .. 91

3.1. Using mpitune Utility .. 91

3.1.1. Cluster Specific Tuning .. 96

3.1.2. Application Specific Tuning ... 97

3.1.3. Tuning Utility Output ... 98

3.2. Process Pinning ... 98

3.2.1. Processor Identification ... 98

3.2.2. Environment Variables .. 99

3.2.3. Interoperability with OpenMP* API .. 107

3.3. Fabrics Control .. 119

3.3.1. Communication Fabrics Control ... 119

3.3.2. Shared Memory Control ... 127

3.3.3. DAPL-capable Network Fabrics Control ... 135

3.3.4. DAPL UD-capable Network Fabrics Control .. 145

3.3.5. TCP-capable Network Fabrics Control ... 155

3.3.6. TMI-capable Network Fabrics Control ... 158

3.3.7. OFA*-capable Network Fabrics Control .. 158

iii

3.3.8. Failover Support in the OFA* Device .. 164

3.4. Collective Operation Control .. 164

3.4.1. I_MPI_ADJUST Family ... 165

3.4.2. I_MPI_MSG Family ... 170

3.5. Miscellaneous .. 175

3.5.1. Timer Control ... 175

3.5.2. Compatibility Control .. 176

3.5.3. Dynamic Process Support .. 176

3.5.4. Fault Tolerance .. 177

3.5.5. Statistics Gathering Mode .. 179

3.5.6. ILP64 Support .. 198

3.5.7. Unified Memory Management ... 201

3.5.8. File System Support .. 201

3.5.9. Multi-threaded memcpy Support ... 203

4. Glossary .. 205

5. Index .. 207

1

Disclaimer and Legal Notices

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY
RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND
CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND
INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL
PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR
PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT.
A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or
indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY
SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS
SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND
EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND
REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF
PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION
CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE
DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.
Intel may make changes to specifications and product descriptions at any time, without notice. Designers must
not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities
arising from future changes to them. The information here is subject to change without notice. Do not finalize a
design with this information.
The products described in this document may contain design defects or errors known as errata which may cause
the product to deviate from published specifications. Current characterized errata are available on request.
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your
product order.
Copies of documents which have an order number and are referenced in this document, or other Intel literature,
may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

MPEG-1, MPEG-2, MPEG-4, H.261, H.263, H.264, MP3, DV, VC-1, MJPEG, AC3, AAC, G.711, G.722, G.722.1,
G.722.2, AMRWB, Extended AMRWB (AMRWB+), G.167, G.168, G.169, G.723.1, G.726, G.728, G.729, G.729.1,
GSM AMR, GSM FR are international standards promoted by ISO, IEC, ITU, ETSI, 3GPP and other
organizations. Implementations of these standards, or the standard enabled platforms may require licenses from
various entities, including Intel Corporation.

BlueMoon, BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino Inside, Cilk, Core Inside, E-GOLD,
Flexpipe, i960, Intel, the Intel logo, Intel AppUp, Intel Atom, Intel Atom Inside, Intel Core, Intel Inside, Intel Insider,
the Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel SingleDriver, Intel SpeedStep, Intel
Sponsors of Tomorrow., the Intel Sponsors of Tomorrow. logo, Intel StrataFlash, Intel vPro, Intel XScale, Intel
True Scale Fabric, InTru, the InTru logo, the InTru Inside logo, InTru soundmark, Itanium, Itanium Inside, MCS,
MMX, Moblin, MPSS, Pentium, Pentium Inside, Puma, skoool, the skoool logo, SMARTi, Sound Mark, Stay With
It, The Creators Project, The Journey Inside, Thunderbolt, Ultrabook, vPro Inside, VTune, Xeon, Xeon Phi, Xeon
Inside, X-GOLD, XMM, X-PMU and XPOSYS are trademarks of Intel Corporation in the U.S. and/or other
countries.

* Other names and brands may be claimed as the property of others.

Microsoft, Windows, and the Windows logo are trademarks, or registered trademarks of Microsoft
Corporation in the United States and/or other countries.

Java is a registered trademark of Oracle and/or its affiliates.

Copyright (C) 2003–2014, Intel Corporation. Portions (PBS Library) are copyrighted by Altair Engineering, Inc.
and used with permission. All rights reserved.

2

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for

optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3,
and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability,

functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel.
Microprocessor-dependent optimizations in this product are intended for use with Intel
microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more

information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

3

1. Introduction
This Reference Manual provides you with command and tuning reference for the Intel® MPI

Library. The Reference Manual contains the following sections

Document Organization

Section Description

Section 1 Introduction Section 1 introduces this document

Section 2 Command

Reference

Section 2 describes options and environment variables for compiler

commands, job startup commands, and MPD daemon commands as
well

Section 3 Tuning

Reference

Section 3 describes environment variables used to influence program

behavior and performance at run time

Section 4 Glossary Section 4 explains basic terms used in this document

Section 5 Index Section 5 references options and environment variables names

1.1. Introducing Intel® MPI Library

The Intel® MPI Library is a multi-fabric message passing library that implements the Message

Passing Interface, v2.2 (MPI-2.2) specification. It provides a standard library across Intel®

platforms that enable adoption of MPI-2.2 functions as their needs dictate.

The Intel® MPI Library enables developers to change or to upgrade processors and interconnects

as new technology becomes available without changes to the software or to the operating
environment.

The library is provided in the following kits:

 The Intel® MPI Library Runtime Environment (RTO) has the tools you need to run programs,

including Multipurpose Daemon* (MPD), Hydra* and supporting utilities, shared (.so) libraries,
and documentation.

 The Intel® MPI Library Development Kit (SDK) includes all of the Runtime Environment

components plus compilation tools, including compiler commands such as mpiicc, include files

and modules, static (.a) libraries, debug libraries, trace libraries, and test codes.

1.2. Intended Audience

This Reference Manual helps an experienced user understand the full functionality of the Intel®

MPI Library.

1.3. What's New

This document reflects the updates for Intel® MPI Library 4.1 Update 3 for Linux* OS.

Intel® MPI Library Reference Manual for Linux* OS

4

The following latest changes in this document were made:

 Update the I_MPI_PIN_MODE environment variable.

 Add the I_MPI_JOB_RESPECT_PROCESS_PLACEMENT environment variable.

 Add the cell description in the topic, Glossary.

1.4. Notational Conventions

The following conventions are used in this document.

Conventions and Symbols used in this Document

This type style Document or product names

This type style Hyperlinks

This type style Commands, arguments, options, file names

THIS_TYPE_STYLE Environment variables

<this type style> Placeholders for actual values

[items] Optional items

{ item | item } Selectable items separated by vertical bar(s)

(SDK only) For Software Development Kit (SDK) users only

1.5. Related Information

The following related documents that might be useful to the user:

Product Web Site

Intel® MPI Library Support

Intel® Cluster Tools Products

Intel® Software Development Products

http://www.intel.com/go/mpi
http://www.intel.com/software/products/support/mpi
http://software.intel.com/en-us/articles/intel-cluster-studio-xe/
http://www.intel.com/software/products

5

2. Command Reference
This section provides information on different command types and how to use these commands:

 Compiler commands

 Simplified job startup command

 Scalable process management system (Hydra) commands

 Intel® Xeon Phi™ Coprocessor Support

 Multipurpose daemon commands

 Processor information utility

2.1. Compiler Commands

(SDK only)

The following table lists available MPI compiler commands and the underlying compilers, compiler

families, languages, and application binary interfaces (ABIs) that they support.

Table 2.1-1 The Intel® MPI Library Compiler Drivers

Compiler Command Default Compiler Supported Language(s) Supported ABI(s)

Generic Compilers

mpicc gcc, cc C 32/64 bit

mpicxx g++ C/C++ 32/64 bit

mpifc gfortran Fortran77*/Fortran 95* 32/64 bit

GNU* Compilers Versions 3 and Higher

mpigcc gcc C 32/64 bit

mpigxx g++ C/C++ 32/64 bit

mpif77 g77 Fortran 77 32/64 bit

mpif90 gfortran Fortran 95 32/64 bit

Intel® Fortran, C++ Compilers Versions 13.1 through 14.0 and Higher

mpiicc icc C 32/64 bit

mpiicpc icpc C++ 32/64 bit

mpiifort ifort Fortran77/Fortran 95 32/64 bit

Intel® MPI Library Reference Manual for Linux* OS

6

 Compiler commands are available only in the Intel® MPI Library Development Kit.

 Compiler commands are in the <installdir>/<arch>/bin directory. Where <installdir>

refers to the Intel® MPI Library installation directory and <arch> is one of the following

architectures:

 ia32 - IA-32 architecture

 intel64 - Intel® 64 architecture

 mic – Intel® Xeon Phi™ Coprocessor architecture

 Ensure that the corresponding underlying compilers (32-bit or 64-bit, as appropriate) are

already in your PATH.

 To port existing MPI-enabled applications to the Intel® MPI Library, recompile all sources.

 To display mini-help of a compiler command, execute it without any parameters.

2.1.1. Compiler Command Options

-mt_mpi

Use this option to link the thread safe version of the Intel® MPI Library at the following levels:

MPI_THREAD_FUNNELED, MPI_THREAD_SERIALIZED, or MPI_THREAD_MULTIPLE.

The MPI_THREAD_FUNNELED level is provided by default by the thread safe version of the Intel®

MPI Library.

NOTE:

If you specify either the -openmp or the -parallel options for the Intel® C Compiler,

the thread safe version of the library is used.

NOTE:

If you specify one of the following options for the Intel® Fortran Compiler, the thread safe

version of the library is used:

 -openmp

 -parallel

 -threads

 -reentrancy

 -reentrancy threaded

-static_mpi

7

Use this option to link the Intel® MPI library statically. This option does not affect the default

linkage method for other libraries.

-static

Use this option to link the Intel® MPI library statically. This option is passed to the compiler.

-config=<name>

Use this option to source the configuration file. See Configuration Files for details.

-profile=<profile_name>

Use this option to specify an MPI profiling library. The profiling library is selected using one of the

following methods:

 Through the configuration file <profile_name>.conf located in the

<installdir>/<arch>/etc. See Profiles for details.

 In the absence of the respective configuration file, by linking the library

lib<profile_name>.so or lib<profile_name>.a located in the same directory as the

Intel® MPI Library.

-t or -trace

Use the -t or -trace option to link the resulting executable against the Intel® Trace Collector

library. This has the same effect as if -profile=vt is used as an argument to mpiicc or another

compiler script.

Use the -t=log or -trace=log option to link the resulting executable against the logging Intel®

MPI Library and the Intel® Trace Collector libraries. The logging libraries trace internal Intel® MPI

Library states in addition to the usual MPI function calls.

To use this option, include the installation path of the Intel® Trace Collector in the

VT_ROOT environment variable. Set the environment variable I_MPI_TRACE_PROFILE to the

<profile_name> to specify another profiling library. For example, set I_MPI_TRACE_PROFILE to

vtfs to link against the fail-safe version of the Intel® Trace Collector.

-check_mpi

Use this option to link the resulting executable against the Intel® Trace Collector correctness

checking library. This has the same effect as using -profile=vtmc as an argument to the mpiicc

or another compiler script.

To use this option, include the installation path of the Intel® Trace Collector in the

VT_ROOT environment variable. Set I_MPI_CHECK_PROFILE to the <profile_name> environment

variable to specify another checking library.

-ilp64

Use this option to enable partial ILP64 support. All integer arguments of the Intel MPI Library are

treated as 64-bit values in this case.

Intel® MPI Library Reference Manual for Linux* OS

8

NOTE:

If you specify the -i8 option for the Intel® Fortran Compiler, you still have to use the ILP64

option for linkage. See ILP64 Support for details.

-dynamic_log

Use this option in combination with the -t option to link the Intel® Trace Collector library

dynamically. This option does not affect the default linkage method for other libraries.

To run the resulting programs, include $VT_ROOT/slib in the LD_LIBRARY_PATH environment

variable.

-g

Use this option to compile a program in debug mode and link the resulting executable against the

debugging version of the Intel® MPI Library. See Environment variables, I_MPI_DEBUG for

information on how to use additional debugging features with the -g builds.

NOTE:

The debugging version of the Intel® MPI Library is built without optimization. See I_MPI_LINK

option for details about choosing a version of Intel® MPI Library.

-link_mpi=<arg>

Use this option to always link the specified version of the Intel® MPI Library. See the I_MPI_LINK

environment variable for detailed argument descriptions. This option overrides all other options

that select a specific library, such as –mt_mpi, -t=log, -trace=log and -g.

-O

Use this option to enable compiler optimization.

-fast

Use this Intel compiler option to maximize speed across the entire program. This option forces

static linkage method for the Intel® MPI Library.

See xHost for information on implication of this option on non-Intel processors.

NOTE:

This option is supported on mpiicc, mpiicpc, and mpiifort Intel compiler drivers.

-echo

Use this option to display everything that the command script does.

-show

http://software.intel.com/en-us/articles/intel-software-documentation-library-search/

9

Use this option to learn how the underlying compiler is invoked, without actually running it. For

example, use the following command to see the required compiler flags and options:

$ mpiicc -show -c test.c

Use the following command to see the required link flags, options, and libraries:

$ mpiicc -show -o a.out test.o

This is particularly useful for determining the command line for a complex build procedure that

directly uses the underlying compilers.

-{cc,cxx,fc,f77,f90}=<compiler>

Use this option to select the underlying compiler.

For example, use the following command to select the Intel® C++ Compiler:

$ mpicc -cc=icc -c test.c

Make sure icc is in your path. Alternatively, you can specify the full path to the compiler.

-gcc-version=<nnn>

Use this option for compiler drivers mpicxx and mpiicpc when linking an application running in a

particular GNU* C++ environment. The valid <nnn> values are:

<nnn> value GNU* C++ version

320 3.2.x

330 3.3.x

340 3.4.x

400 4.0.x

410 4.1.x

420 4.2.x

430 4.3.x

440 4.4.x

450 4.5.x

460 4.6.x

470 4.7.x

By default, the library compatible with the detected version of the GNU* C++ compiler is used. Do

not use this option if the GNU* C++ version is lower than 4.0.0.

-compchk

Intel® MPI Library Reference Manual for Linux* OS

10

Use this option to enable compiler setup checks. In this case, each compiler driver performs

checks to ensure that the appropriate underlying compiler is set up correctly.

-v

Use this option to print the compiler driver script version and its native compiler version.

2.1.2. Configuration Files

You can create Intel® MPI Library compiler configuration files using the following file naming

convention:

<installdir>/<arch>/etc/mpi<compiler>-<name>.conf

where:

<arch> = {ia32,em64t,mic} for the IA-32, the Intel® 64 architectures, and Intel® Xeon Phi™

Coprocessor architecture the respectively

 <compiler> = {cc,cxx,f77,f90}, depending on the language being compiled

 <name> = name of the underlying compiler with spaces replaced by hyphens

For example, the <name> value for cc -64 is cc--64

To enable changes to the environment based on the compiler command, you need to source these

files, or use the -config option before compiling or linking.

2.1.3. Profiles

You can select a profile library through the -profile option of the Intel® MPI Library compiler

drivers. The profile files are located in the <installdir>/<arch>/etc directory. The Intel® MPI

Library comes with several predefined profiles for the Intel® Trace Collector:

<installdir>/etc/vt.conf - regular Intel® Trace Collector library

<installdir>/etc/vtfs.conf - fail-safe Intel® Trace Collector library

<installdir>/etc/vtmc.conf - correctness checking Intel® Trace Collector library

You can also create your own profile as <profile_name>.conf

The following environment variables can be defined there:

PROFILE_PRELIB - libraries (and paths) to include before the Intel® MPI Library

PROFILE_POSTLIB - libraries to include after the Intel® MPI Library

PROFILE_INCPATHS - C preprocessor arguments for any include files

For instance, create a file /myprof.conf with the following lines:

PROFILE_PRELIB="-L<path_to_myprof>/lib -lmyprof"

PROFILE_INCPATHS="-I<paths_to_myprof>/include"

11

Use the command-line argument -profile=myprof for the relevant compile driver to select this

new profile.

2.1.4. Environment Variables

I_MPI_{CC,CXX,FC,F77,F90}_PROFILE

(MPI{CC,CXX,FC,F77,F90}_PROFILE)

Specify a default profiling library.

Syntax

I_MPI_{CC,CXX,FC,F77,F90}_PROFILE=<profile_name>

Deprecated Syntax

MPI{CC,CXX,FC,F77,F90}_PROFILE=<profile_name>

Arguments

<profile_name> Specify a default profiling library.

Description

Set this environment variable to select a specific MPI profiling library to be used by default. This

has the same effect as using -profile=<profile_name> as an argument to the mpiicc or

another Intel® MPI Library compiler driver.

I_MPI_TRACE_PROFILE

Specify a default profile for the -trace option.

Syntax

I_MPI_TRACE_PROFILE=<profile_name>

Arguments

<profile_name> Specify a tracing profile name. The default value is vt.

Description

Set this environment variable to select a specific MPI profiling library to be used with the -trace

option to mpiicc or another Intel® MPI Library compiler driver.

The I_MPI_{CC,CXX,F77,F90}_PROFILE environment variable overrides I_MPI_TRACE_PROFILE.

I_MPI_CHECK_PROFILE

Specify a default profile for the -check_mpi option.

Intel® MPI Library Reference Manual for Linux* OS

12

Syntax

I_MPI_CHECK_PROFILE=<profile_name>

Arguments

<profile_name>
Specify a checking profile name. The default value is
vtmc.

Description

Set this environment variable to select a specific MPI checking library to be used with the -

check_mpi option to mpiicc or another Intel® MPI Library compiler driver.

The I_MPI_{CC,CXX,F77,F90}_PROFILE environment variable overrides the

I_MPI_CHECK_PROFILE.

I_MPI_CHECK_COMPILER

Turn on/off compiler compatibility check.

Syntax

I_MPI_CHECK_COMPILER=<arg>

Arguments

<arg> Binary indicator.

enable | yes | on | 1 Enable checking the compiler.

disable | no | off | 0 Disable checking the compiler. This is the default value.

Description

If I_MPI_CHECK_COMPILER is set to enable, the Intel MPI compiler drivers check the underlying

compiler for compatibility. Normal compilation requires using a known version of the underlying

compiler.

I_MPI_{CC,CXX,FC,F77,F90}

(MPICH_{CC,CXX,FC,F77,F90})

Set the path/name of the underlying compiler to be used.

Syntax

I_MPI_{CC,CXX,FC,F77,F90}=<compiler>

Deprecated Syntax

MPICH_{CC,CXX,FC,F77,F90}=<compiler>

Arguments

<compiler> Specify the full path/name of compiler to be used.

13

Description

Set this environment variable to select a specific compiler to be used. Specify the full path to the

compiler if it is not located in the search path.

NOTE:

Some compilers may require additional command line options.

NOTE:

The configuration file is sourced if it exists for a specified compiler. See Configuration Files for

details.

I_MPI_ROOT

Set the Intel® MPI Library installation directory path.

Syntax

I_MPI_ROOT=<path>

Arguments

<path> Specify the installation directory of the Intel® MPI Library

Description

Set this environment variable to specify the installation directory of the Intel® MPI Library.

VT_ROOT

Set Intel® Trace Collector installation directory path.

Syntax

VT_ROOT=<path>

Arguments

<path> Specify the installation directory of the Intel® Trace Collector

Description

Set this environment variable to specify the installation directory of the Intel® Trace Collector.

I_MPI_COMPILER_CONFIG_DIR

Set the location of the compiler configuration files.

Syntax

I_MPI_COMPILER_CONFIG_DIR=<path>

Intel® MPI Library Reference Manual for Linux* OS

14

Arguments

<path>

Specify the location of the compiler configuration files. The

default value is <installdir>/<arch>/etc

Description

Set this environment variable to change the default location of the compiler configuration files.

I_MPI_LINK

Select a specific version of the Intel® MPI Library for linking.

Syntax

I_MPI_LINK=<arg>

Arguments

<arg> Version of library

opt The optimized, single threaded version of the Intel® MPI Library

opt_mt The optimized, multithreaded version of the Intel MPI Library

dbg The debugging, single threaded version of the Intel MPI Library

dbg_mt The debugging, multithreaded version of Intel MPI Library

log The logging, single threaded version of the Intel MPI Library

log_mt The logging, multithreaded version of the Intel MPI Library

Description

Set this variable to always link against the specified version of the Intel® MPI Library.

2.2. Simplified Job Startup Command

mpirun

Syntax

mpirun <options>

where <options> := <mpiexec.hydra options> | [<mpdboot options>] <mpiexec
options>

Arguments

<mpiexec.hydra options>

mpiexec.hydra options as described in the

mpiexec.hydra section. This is the default operation

mode.

15

<mpdboot options> mpdboot options as described in the mpdboot command

description, except -n

<mpiexec options> mpiexec options as described in the mpiexec section

Description

Use this command to launch an MPI job. The mpirun command uses Hydra* or MPD as the

underlying process managers. Hydra is the default process manager. Set the

I_MPI_PROCESS_MANAGER environment variable to change the default value.

The mpirun command detects if the MPI job is submitted from within a session allocated using a

job scheduler like Torque*, PBS Pro*, LSF*, Parallelnavi* NQS*, SLURM*, Oracle Grid Engine*, or

LoadLeveler*. In this case, the mpirun command extracts the host list from the respective

environment and uses these nodes automatically according to the above scheme.

In this case, you do not need to create the mpd.hosts file. Allocate the session using a job

scheduler installed on your system, and use the mpirun command inside this session to run your

MPI job.

Hydra* Specification

When running under a job manager, the mpirun command ignores the -r | --rsh option if

Hydra* is used as the underlying process manager. In this case, the corresponding Hydra*

bootstrap server is used. Use the bootstrap specific options or corresponding environment
variables explicitly to override the auto detected bootstrap server.

The mpirun command silently ignores the MPD specific options for compatibility reasons if you

select Hydra* as the active process manager. The following table provides the list of silently

ignored and unsupported MPD* options. Avoid these unsupported options if the Hydra* process
manager is used.

Ignored mpdboot Options Ignored mpiexec Options Unsupported

mpdboot Options

Unsupported

mpiexec
Options

--loccons -[g]envuser --user=<user> |

-u <user>

-a

--remcons -[g]envexcl --mpd=<mpdcmd>

| -m <mpdcmd>

--ordered | -o -m --shell | -s

--

maxbranch=<maxbranch>

| -b <maxbranch>

-ifhn

<interface/hostname>
-1

--parallel-startup | -

p

-ecfn <filename> --

ncpus=<ncpus>

Intel® MPI Library Reference Manual for Linux* OS

16

 -tvsu

MPD* Specification

If you select MPD* as the process manager, the mpirun command automatically starts an

independent ring of the mpd daemons, launches an MPI job, and shuts down the mpd ring upon
job termination.

The first non-mpdboot option (including -n or -np) delimits the mpdboot and the mpiexec options.

All options up to this point, excluding the delimiting option, are passed to the mpdboot command.

All options from this point on, including the delimiting option, are passed to the mpiexec command.

All configuration files and environment variables applicable to the mpdboot and

mpiexec commands also apply to the mpiruncommand.

The set of hosts is defined by the following rules, which are executed in this order:

1. All host names from the mpdboot host file (either mpd.hosts or the file specified by the -f

option).

2. All host names returned by the mpdtrace command, if there is an mpd ring running.

3. The local host (a warning is issued in this case).

I_MPI_MPIRUN_CLEANUP

Control the environment cleanup after the mpirun command.

Syntax

I_MPI_MPIRUN_CLEANUP=<value>

Arguments

<value> Define the option.

enable | yes | on | 1 Enable the environment cleanup.

disable | no | off | 0 Disable the environment cleanup. This is the default value.

Description

Use this environment variable to define whether to clean up the environment upon the mpirun

completion. The cleanup includes the removal of the eventual stray service process, temporary
files, and so on.

I_MPI_PROCESS_MANAGER

Select a process manager to be used by the mpirun command.

Syntax

I_MPI_PROCESS_MANAGER=<value>

17

Arguments

<value> String value

hydra Use Hydra* process manager. This is the default value

mpd Use MPD* process manager

Description

Set this environment variable to select the process manager to be used by the mpirun command.

NOTE:

You can run each process manager directly by invoking the mpiexec command for MPD* and

the mpiexec.hydra command for Hydra*.

2.3. Scalable Process Management System (Hydra)

Commands

mpiexec.hydra

 The mpiexec.hydra is a more scalable alternative to the MPD* process manager.

Syntax

mpiexec.hydra <g-options> <l-options> <executable>

or

mpiexec.hydra <g-options> <l-options> <executable1> : \

<l-options> <executable2>

Arguments

<g-options> Global options that apply to all MPI processes

<l-options> Local options that apply to a single arg-set

<executable> ./a.out or path/name of the executable file

Description

Use the mpiexec.hydra utility to run MPI applications without the MPD ring.

Use the first short command-line syntax to start all MPI processes of the <executable> with the

single set of arguments. For example, the following command executes a.out over the specified

processes and hosts :

$ mpiexec.hydra -f <hostsfile> -n <# of processes> ./a.out

Intel® MPI Library Reference Manual for Linux* OS

18

where:

 <# of processes> specifies the number of processes on which to run the a.out executable

 <hostsfile> specifies a list of hosts on which to run the a.out executable

Use the second long command-line syntax to set different argument sets for different MPI program

runs. For example, the following command executes two different binaries with different argument
sets:

$ mpiexec.hydra -f <hostsfile> -env <VAR1> <VAL1> -n 2 ./a.out : \

-env <VAR2> <VAL2> -n 2 ./b.out

NOTE:

If there is no "." in the PATH environment variable on all nodes of the cluster, specify

<executable> as ./a.out instead of a.out.

NOTE:

You need to distinguish global options from local options. In a command-line syntax, place the

local options after the global options.

2.3.1. Global Options

-hostfile <hostfile> or -f <hostfile>

Use this option to specify host names on which to run the application. If a host name is repeated,

this name is used only once.

See also the I_MPI_HYDRA_HOST_FILE environment variable for more details.

NOTE:

Use the -perhost, -ppn, -grr, and -rr options to change the process placement on the cluster

nodes.

-machinefile <machine file> or -machine <machine file>

Use this option to control the process placement through the <machine file>. The total number

of processes to start is defined by the -n option.

-genv <ENVVAR> <value>

Use this option to set the <ENVVAR> environment variable to the specified <value> for all MPI

processes.

-genvall

19

Use this option to enable propagation of all environment variables to all MPI processes.

-genvnone

Use this option to suppress propagation of any environment variables to any MPI processes.

-genvlist <list of genv var names>

Use this option to pass a list of environment variables with their current values. <list of genv

var names> is a comma separated list of environment variables to be sent to all MPI processes.

-pmi-connect <mode>

Use this option to choose the Process Management Interface* (PMI) message caching mode.

Possible values for <mode> are:

 nocache - do not cache PMI messages.

 cache - cache PMI messages on the local pmi_proxy management processes to minimize PMI

requests. Cached information is propagated to the child management processes.

 lazy-cache - cache mode with on-request propagation of the PMI information.

The lazy-cache mode is the default mode.

See the I_MPI_HYDRA_PMI_CONNECT environment variable for more details.

-perhost <# of processes >, -ppn <# of processes >, or -grr <# of
processes>

Use this option to place the indicated number of consecutive MPI processes on every host in the

group using round robin scheduling. See the I_MPI_PERHOST environment variable for more
details.

-rr

Use this option to place consecutive MPI processes on different hosts using the round robin

scheduling. This option is equivalent to -perhost 1. See the I_MPI_PERHOST environment

variable for more details.

(SDK only) -trace [<profiling_library>] or -t [<profiling_library>]

Use this option to profile your MPI application using the indicated <profiling_library>. If the

<profiling_library> is not mentioned, the default profiling library libVT.so is used.

Set the I_MPI_JOB_TRACE_LIBS environment variable to override the default profiling library.

(SDK only) -check_mpi [<checking_library>]

Use this option to check your MPI application using the indicated <checking_library>. If

<checking_library> is not mentioned, the default checking library libVTmc.so is used.

Set the I_MPI_JOB_CHECK_LIBS environment variable to override the default checking library.

Intel® MPI Library Reference Manual for Linux* OS

20

-configfile <filename>

Use this option to specify the file <filename> that contains the command-line options. Blank lines

and lines that start with '#' as the first character are ignored.

-branch-count <num>

Use this option to restrict the number of child management processes launched by the

mpiexec.hydra command, or by each pmi_proxy management process.

See the I_MPI_HYDRA_BRANCH_COUNT environment variable for more details.

-pmi-aggregate or -pmi-noaggregate

Use this option to switch on or off, respectively, the aggregation of the PMI requests. The default

value is -pmi-aggregate, which means the aggregation is enabled by default.

See the I_MPI_HYDRA_PMI_AGGREGATE environment variable for more details.

-tv

Use this option to run <executable> under the TotalView* debugger. For example:

$ mpiexec.hydra -tv -n <# of processes><executable>

See Environment Variables for information on how to select the TotalView* executable file.

NOTE:

TotalView* uses rsh by default. If you want to use ssh, set the value of the TVDSVRLAUNCHCMD

environment variable to ssh.

NOTE:

The TotalView* debugger can display message queue state of your MPI program. To enable this

feature, do the following steps:

1. Run your <executable> with the -tv option.

 $ mpiexec.hydra -tv -n <# of processes> <executable>

2. Answer Yes to the question about stopping the mpiexec.hydra job.

To display the internal state of the MPI library textually, select the Tools > Message Queue
command. If you select the Process Window Tools > Message Queue Graph command, the
TotalView* environment variable displays a window that shows a graph of the current message

queue state. For more information, see the TotalView* environment variable.

-tva <pid>

Use this option to attach the TotalView* debugger to an existing Intel® MPI job. Use the

mpiexec.hydra process id as <pid>. For example:

21

$ mpiexec.hydra -tva <pid>

-gdb

Use this option to run <executable> under the GNU* debugger. For example:

$ mpiexe.hydra -gdb -n <# of processes> <executable>

-gdba <pid>

Use this option to attach the GNU* debugger to the existing Intel® MPI job. For example:

$ mpiexec.hydra -gdba <pid>

-nolocal

Use this option to avoid running the <executable> on the host where the mpiexec.hydra is

launched. You can use this option on clusters that deploy a dedicated master node for starting the
MPI jobs and a set of dedicated compute nodes for running the actual MPI processes.

-hosts <nodelist>

Use this option to specify a particular <nodelist> on which to run the MPI processes. For example,

the following command runs the executable a.out on hosts host1 and host2:

$ mpiexec.hydra-n 2 -hosts host1,host2 ./a.out

NOTE:

If <nodelist> consists of only one node, this option is interpreted as a local option. See Local

Options for details.

-iface <interface>

Use this option to choose the appropriate network interface. For example, if the IP emulation of

your InfiniBand* network is configured to ib0, you can use the following command.

$ mpiexec.hydra -n 2 -iface ib0 ./a.out

See the I_MPI_HYDRA_IFACE environment variable for more details.

-demux <mode>

Use this option to set polling mode for multiple I/O. The default is poll.

Arguments

<spec> Define the polling mode for multiple I/O

poll Set poll as the polling mode. This is the default value.

select Set select as the polling mode.

Intel® MPI Library Reference Manual for Linux* OS

22

See the I_MPI_HYDRA_DEMUX environment variable for more details.

-enable-x or -disable-x

Use this option to control the Xlib* traffic forwarding. The default value is -disable-x, which

means the Xlib traffic will not be forwarded.

-l

Use this option to insert the MPI process rank at the beginning of all lines written to the standard

output.

-tune [<arg >]

where:

<arg> = {<dir_name>, <configuration_file>}.

Use this option to optimize the Intel® MPI Library performance by using the data collected by the

mpitune utility.

NOTE:

Use the mpitune utility to collect the performance tuning data before using this option.

If <arg> is not specified, the best-fit tune options are selected for the given configuration. The

default location of the configuration file is <installdir>/<arch>/etc directory.

To specify a different location for the configuration file, set <arg>=<dir_name>.

To specify a different configuration file, set <arg>=<configuration_file>.

-s <spec>

Use this option to direct standard input to the specified MPI processes.

Arguments

<spec> Define MPI process ranks

all Use all processes

<l>,<m>,<n>

Specify an exact list and use processes <l>, <m> and <n> only.

The default value is zero

<k>,<l>-<m>,<n> Specify a range and use processes <k>, <l> through <m>, and <n>

-noconf

Use this option to disable processing of the mpiexec.hydra configuration files described in

Configuration Files.

23

-ordered-output

Use this option to avoid intermingling of data output from the MPI processes. This option affects

both the standard output and the standard error streams.

NOTE:

When using this option, end the last output line of each process with the end-of-line (\n)

character. Otherwise the application may stop responding.

-path <directory>

Use this option to specify the path to the <executable> file.

-cleanup

Use this option to create a temporary file containing information about the launched processes.

The file name is mpiexec_${username}_$PPID.log, where PPID is a parent process PID. This file

is created in the temporary directory selected by the -tmpdir option. This file is used by the

mpicleanup utility. If a job terminates successfully, the mpiexec.hydra command automatically

removes this file.

See the I_MPI_HYDRA_CLEANUP environment variable for more details.

-tmpdir

Use this option to set a directory for temporary files.

See the I_MPI_TMPDIR environment variable for more details.

-version or -V

Use this option to display the version of the Intel® MPI Library.

-info

Use this option to display build information of the Intel® MPI Library. When this option is used, the

other command line arguments are ignored.

 Bootstrap Options

-bootstrap <bootstrap server>

Use this option to select a built-in bootstrap server to use. A bootstrap server is the basic remote

node access mechanism that is provided by the system. Hydra supports multiple runtime bootstrap

servers such as ssh, rsh, pdsh, fork, persist, slurm, ll, lsf, sge, or jmi to launch

the MPI processes. The default bootstrap server is ssh. By selecting slurm, ll, lsf, or sge, you

use the corresponding srun, llspawn.stdio, blaunch, or qrsh internal job scheduler utility to

launch service processes under the respective selected job scheduler (SLURM*, LoadLeveler*,
LSF*, and SGE*).

Intel® MPI Library Reference Manual for Linux* OS

24

Arguments

<arg> String parameter

ssh Use secure shell. This is the default value

rsh Use remote shell

pdsh Use parallel distributed shell

fork Use fork call

slurm Use SLURM* srun command

ll Use LoadLeveler* llspawn.stdio command

lsf Use LSF blaunch command

sge Use Oracle Grid Engine* qrsh command

jmi Use Job Manager Interface (tighter integration)

To enable tighter integration with the SLURM* or PBS Pro* job manager, use the jmi bootstrap

server. Tighter integration includes registration of the process identifiers by the respective job

managers. This configuration enables better resource accounting by the respective job manager,
and better node cleanup upon job termination.

See the -bootstrap jmi description and the I_MPI_HYDRA_BOOTSTRAP environment variable for

details.

-bootstrap-exec <bootstrap server>

Use this option to set the executable to be used as a bootstrap server. The default bootstrap

server is ssh. For example:

$ mpiexec.hydra -bootstrap-exec <bootstrap_server_executable> \

-f hosts.file -env <VAR1> <VAL1> -n 2 ./a.out

See the I_MPI_HYDRA_BOOTSTRAP environment variable for more details.

-bootstrap jmi

Use this option to enable tight integration with the SLURM* or PBS Pro* job schedulers. Tighter

integration is implemented using a particular job scheduler application programming interface or

utility. If you specify this option, the default libjmi.so library is loaded. You can overwrite the

default library name through the I_MPI_HYDRA_JMI_LIBRARY environment variable.

See the I_MPI_HYDRA_JMI_LIBRARY environment variable for more details.

 Binding Options

-binding

25

Use this option to pin or bind MPI processes to a particular processor and avoid undesired process

migration. In the following syntax, the quotes may be omitted for a one-member list. Each

parameter corresponds to a single pinning property.

This option is supported on both Intel® and non-Intel microprocessors, but it may perform

additional optimizations for Intel microprocessors than it performs for non-Intel microprocessors.

Syntax

-binding "<parameter>=<value>[;<parameter>=<value> ...]"

Parameters

pin Pinning switch

enable | yes | on |

1 Turn on the pinning property. This is the default value

disable | no | off |

0 Turn off the pinning property

cell Pinning resolution

unit Basic processor unit (logical CPU)

core Processor core in multi-core system

map Process mapping

spread The processes are mapped consecutively to separate

processor cells. Thus, the processes do not share the

common resources of the adjacent cells.

scatter The processes are mapped to separate processor cells.

Adjacent processes are mapped upon the cells that are
the most remote in the multi-core topology.

bunch The processes are mapped to separate processor cells by

#processes/#sockets processes per socket. Each socket
processor portion is a set of the cells that are the closest
in the multi-core topology.

p0,p1,...,pn The processes are mapped upon the separate processors

according to the processor specification on the

p0,p1,...,pn list: theith process is mapped upon the

processor pi, where

pi takes one of the following values:

 processor number like n

 range of processor numbers like n-m

Intel® MPI Library Reference Manual for Linux* OS

26

 -1 for no pinning of the corresponding process

[m0,m1,...,mn] The ith process is mapped upon the processor

subset defined by mi hexadecimal mask using the

following rule:

The jth processor is included into the subset mi if the jth

bit of mi equals 1.

domain Processor domain set on a node

cell
Each domain of the set is a single processor cell (unit or

core).

core
Each domain of the set consists of the processor cells

that share a particular core.

cache1
Each domain of the set consists of the processor cells

that share a particular level 1 cache.

cache2
Each domain of the set consists of the processor cells

that share a particular level 2 cache.

cache3
Each domain of the set consists of the processor cells

that share a particular level 3 cache.

cache
The set elements of which are the largest domains among

cache1, cache2, and cache3

socket
Each domain of the set consists of the processor cells

that are located on a particular socket.

node All processor cells on a node are arranged into a single

domain.

<size>[:<layout>] Each domain of the set consists of <size> processor

cells. <size> may have the following values:

 auto - domain size = #cells/#processes

 omp - domain size = OMP_NUM_THREADS

environment variable value

 positive integer - exact value of the domain size

NOTE:

Domain size is limited by the number of processor

27

cores on the node.

Each member location inside the domain is defined by the

optional <layout> parameter value:

 compact - as close with others as possible in

the multi-core topology

 scatter - as far away from others as possible in

the multi-core topology

 range - by BIOS numbering of the processors

If <layout> parameter is omitted, compact is assumed

as the value of <layout>

order Linear ordering of the domains

compact Order the domain set so that adjacent domains are the

closest in the multi-core topology

scatter Order the domain set so that adjacent domains are the

most remote in the multi-core topology

range Order the domain set according to the BIOS processor

numbering

offset Domain list offset

<n> Integer number of the starting domain among the linear

ordered domains. This domain gets number zero. The
numbers of other domains will be cyclically shifted.

2.3.1.2. Communication Subsystem Options

-rmk <RMK>

Use this option to select a resource management kernel to be used. Intel® MPI Library only

supports pbs.

See the I_MPI_HYDRA_RMK environment variable for more details.

2.3.1.3. Other Options

-verbose or -v

Use this option to print debug information from mpiexec.hydra, such as:

 Service processes arguments

Intel® MPI Library Reference Manual for Linux* OS

28

 Environment variables and arguments passed to start an application

 PMI requests/responses during a job life cycle

See the I_MPI_HYDRA_DEBUG environment variable for more details.

-print-rank-map

Use this option to print out the MPI rank mapping.

-print-all-exitcodes

 Use this option to print the exit codes of all processes.

2.3.2. Local Options

-n <# of processes> or -np <# of processes>

Use this option to set the number of MPI processes to run with the current argument set.

-env <ENVVAR> <value>

Use this option to set the <ENVVAR> environment variable to the specified <value> for all MPI

processes in the current arg-set.

-envall

Use this option to propagate all environment variables in the current arg-set.

See the I_MPI_HYDRA_ENV environment variable for more details.

-envnone

Use this option to suppress propagation of any environment variables to the MPI processes in the

current arg-set.

-envlist <list of env var names>

Use this option to pass a list of environment variables with their current values. <list of env

var names> is a comma separated list of environment variables to be sent to the MPI processes.

-host <nodename>

Use this option to specify a particular <nodename> on which the MPI processes are to be run. For

example, the following command executes a.out on hosts host1 and host2:

$ mpiexec.hydra -n 2 -host host1 ./a.out : -n 2 -host host2 ./a.out

-path <directory>

Use this option to specify the path to the <executable> file to be run in the current arg-set.

29

-wdir <directory>

Use this option to specify the working directory in which the <executable> file runs in the current

arg-set.

-umask <umask>

Use this option to perform the umask <umask> command for the remote <executable> file.

2.3.3. Extended Device Control Options

-rdma

Use this option to select an RDMA-capable network fabric. The application attempts to use the first

available RDMA-capable network fabric from the list dapl or ofa. If no such fabric is available,

other fabrics from the list tcp or tmi are used. This option is equivalent to

the -genv I_MPI_FABRICS_LIST dapl,ofa,tcp,tmi -genv I_MPI_FALLBACK 1 setting.

-RDMA

Use this option to select an RDMA-capable network fabric. The application attempts to use the first

available RDMA-capable network fabric from the list dapl or ofa. The application fails if no such

fabric is found. This option is equivalent to the -genv I_MPI_FABRICS_LIST dapl,ofa -genv

I_MPI_FALLBACK 1 setting.

-dapl

Use this option to select a DAPL capable network fabric. The application attempts to use a DAPL

capable network fabric. If no such fabric is available, another fabric from the list tcp,tmi or ofa is

used. This option is equivalent to the -genv I_MPI_FABRICS_LIST dapl,tcp,tmi,ofa -genv

I_MPI_FALLBACK 1 setting.

-DAPL

Use this option to select a DAPL capable network fabric. The application fails if no such fabric is

found. This option is equivalent to the -genv I_MPI_FABRICS_LIST dapl -genv

I_MPI_FALLBACK 0 setting.

-ib

Use this option to select an OFA capable network fabric. The application attempts to use an OFA

capable network fabric. If no such fabric is available, another fabrics from the list dapl,tcp or tmi

is used. This option is equivalent to the -genv I_MPI_FABRICS_LIST ofa,dapl,tcp,tmi -genv

I_MPI_FALLBACK 1 setting.

-IB

Use this option to select an OFA capable network fabric. The application fails if no such fabric is

found. This option is equivalent to the -genv I_MPI_FABRICS_LIST ofa -genv

I_MPI_FALLBACK 0 setting.

Intel® MPI Library Reference Manual for Linux* OS

30

-tmi

Use this option to select a TMI capable network fabric. The application attempts to use a TMI

capable network fabric. If no such fabric is available, another fabric from the list dapl,tcp or ofa

is used. This option is equivalent to the -genv I_MPI_FABRICS_LIST tmi,dapl,tcp,ofa -genv

I_MPI_FALLBACK 1 setting.

-TMI

Use this option to select a TMI capable network fabric. The application fails if no such fabric is

found. This option is equivalent to the -genv I_MPI_FABRICS_LIST tmi -genv

I_MPI_FALLBACK 0 setting.

-mx

Use this option to select Myrinet MX* network fabric. The application attempts to use Myrinet MX*

network fabric. If no such fabric is available, another fabrics from the list dapl,tcp or ofa is used.

This option is equivalent to the -genv I_MPI_FABRICS_LIST tmi,dapl,tcp,ofa -genv
I_MPI_TMI_PROVIDER mx -genv I_MPI_DAPL_PROVIDER mx -genv I_MPI_FALLBACK 1

setting.

-MX

Use this option to select Myrinet MX* network fabric. The application fails if no such fabric is found.

This option is equivalent to the -genv I_MPI_FABRICS_LIST tmi -genv I_MPI_TMI_PROVIDER

mx -genv I_MPI_FALLBACK 0 setting.

-psm

Use this option to select Intel® True Scale Fabric. The application attempts to use Intel True Scale

Fabric. If no such fabric is available, another fabrics from the list dapl,tcp or ofa is used. This

option is equivalent to the -genv I_MPI_FABRICS_LIST tmi,dapl,tcp,ofa -genv

I_MPI_TMI_PROVIDER psm -genv I_MPI_FALLBACK 1 setting.

-PSM

Use this option to select Intel True Scale Fabric. The application fails if no such fabric is found. This

option is equivalent to the -genv I_MPI_FABRICS_LIST tmi -genv I_MPI_TMI_PROVIDER psm

-genv I_MPI_FALLBACK 0 setting.

2.3.4. Environment Variables

I_MPI_HYDRA_HOST_FILE

Set the host file to run the application.

Syntax

I_MPI_HYDRA_HOST_FILE=<arg>

Deprecated Syntax

HYDRA_HOST_FILE=<arg>

31

Arguments

<arg> String parameter

<hostsfile> Full or relative path to the host file

Description

Set this environment variable to specify the hosts file.

I_MPI_HYDRA_DEBUG

Print out the debug information.

Syntax

I_MPI_HYDRA_DEBUG=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Turn on the debug output

disable | no | off | 0 Turn off the debug output. This is the default value

Description

Set this environment variable to enable the debug mode.

I_MPI_HYDRA_ENV

Control the environment propagation.

Syntax

I_MPI_HYDRA_ENV=<arg>

Arguments

<arg> String parameter

all Pass all environment to all MPI processes

Description

Set this environment variable to control the environment propagation to the MPI processes. By

default, the entire launching node environment is passed to the MPI processes. Setting this
variable also overwrites environment variables set by the remote shell.

I_MPI_JOB_TIMEOUT, I_MPI_MPIEXEC_TIMEOUT

(MPIEXEC_TIMEOUT)

Set the timeout period for mpiexec.hydra.

Intel® MPI Library Reference Manual for Linux* OS

32

Syntax

I_MPI_JOB_TIMEOUT=<timeout>

I_MPI_MPIEXEC_TIMEOUT=<timeout>

Deprecated Syntax

MPIEXEC_TIMEOUT=<timeout>

Arguments

<timeout> Define mpiexec.hydra timeout period in seconds

<n> >= 0 The default timeout value is zero, which means no timeout.

Description

Set this environment variable to make mpiexec.hydra terminate the job in <timeout> seconds

after its launch. The <timeout> value should be greater than zero. Otherwise the environment

variable setting is ignored.

NOTE:

Set the I_MPI_JOB_TIMEOUT environment variable in the shell environment before executing

the mpiexec.hydra command. Do not use the -genv or -env options to set the <timeout>

value. Those options are used for passing environment variables to the MPI process

environment.

I_MPI_JOB_TIMEOUT_SIGNAL

(MPIEXEC_TIMEOUT_SIGNAL)

Define the signal to be sent when a job is terminated because of a timeout.

Syntax

I_MPI_JOB_TIMEOUT_SIGNAL=<number>

Deprecated Syntax

MPIEXEC_TIMEOUT_SIGNAL=<number>

Arguments

<number> Define signal number

<n> > 0 The default value is 9 (SIGKILL)

Description

Define a signal number sent to stop the MPI job if the timeout period specified by the

I_MPI_JOB_TIMEOUT environment variable expires. If you set a signal number unsupported by the

33

system, the mpiexec.hydra operation prints a warning message and continues the task

termination using the default signal number 9 (SIGKILL).

I_MPI_JOB_ABORT_SIGNAL

Define a signal to be sent to all processes when a job is terminated unexpectedly.

Syntax

I_MPI_JOB_ABORT_SIGNAL=<number>

Arguments

<number> Define signal number

<n> > 0 The default value is 9 (SIGKILL)

Description

Set this environment variable to define a signal for task termination. If you set an unsupported

signal number, mpiexec.hydra prints a warning message and uses the default signal 9

(SIGKILL).

I_MPI_JOB_SIGNAL_PROPAGATION

(MPIEXEC_SIGNAL_PROPAGATION)

Control signal propagation.

Syntax

I_MPI_JOB_SIGNAL_PROPAGATION=<arg>

Deprecated Syntax

MPIEXEC_SIGNAL_PROPAGATION=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Turn on propagation

disable | no | off | 0 Turn off propagation. This is the default value

Description

Set this environment variable to control propagation of the signals (SIGINT, SIGALRM, and

SIGTERM). If you enable signal propagation, the received signal is sent to all processes of the MPI

job. If you disable signal propagation, all processes of the MPI job are stopped with the default

signal 9 (SIGKILL).

I_MPI_HYDRA_BOOTSTRAP

Intel® MPI Library Reference Manual for Linux* OS

34

Set the bootstrap server.

Syntax

I_MPI_HYDRA_BOOTSTRAP=<arg>

Arguments

<arg> String parameter

ssh Use secure shell. This is the default value

rsh Use remote shell

pdsh Use parallel distributed shell

fork Use fork call

slurm Use SLURM* srun command

ll Use LoadLeveler* llspawn.stdio command

lsf Use LSF blaunch command

sge Use Oracle Grid Engine* qrsh command

jmi Use Job Manager Interface (tighter integration)

Description

Set this environment variable to specify the bootstrap server.

NOTE:

Set the I_MPI_HYDRA_BOOTSTRAP environment variable in the shell environment before

executing the mpiexec.hydra command. Do not use the -env option to set the <arg> value.

This option is used for passing environment variables to the MPI process environment.

I_MPI_HYDRA_BOOTSTRAP_EXEC

Set the executable to be used as a bootstrap server.

Syntax

I_MPI_HYDRA_BOOTSTRAP_EXEC=<arg>

Arguments

<arg> String parameter

<executable> The name of the executable

Description

Set this environment variable to specify the executable to be used as a bootstrap server.

35

I_MPI_HYDRA_RMK

Use the resource management kernel.

Syntax

I_MPI_HYDRA_RMK=<arg>

Arguments

<arg> String parameter

<rmk> Resource management kernel. The only supported value is
pbs

Description

Set this environment variable to use the pbs resource management kernel. Intel® MPI Library

only supports pbs.

I_MPI_HYDRA_PMI_CONNECT

Define the processing method for PMI messages.

Syntax

I_MPI_HYDRA_PMI_CONNECT=<value>

Arguments

<value> The algorithm to be used

nocache Do not cache PMI messages.

cache

Cache PMI messages on the local pmi_proxy management

processes to minimize the number of PMI requests. Cached

information is automatically propagated to child management

processes.

lazy-cache
cache mode with on-demand propagation. This is the default

value.

Description

Use this environment variable to select the PMI messages processing method.

I_MPI_PERHOST

Define the default settings for the -perhost option in the mpiexec and

mpiexec.hydra command.

Syntax

I_MPI_PERHOST=<value>

Intel® MPI Library Reference Manual for Linux* OS

36

Arguments

<value> Define a value that is used for the -perhost option by default

integer > 0 Exact value for the option

all All logical CPUs on the node

allcores All cores (physical CPUs) on the node

Description

Set this environment variable to define the default setting for the -perhost option. The -perhost

option implied with the respective value if the I_MPI_PERHOST environment variable is defined.

I_MPI_JOB_TRACE_LIBS

Choose the libraries to preload through the -trace option.

Syntax

I_MPI_JOB_TRACE_LIBS=<arg>

Deprecated Syntax

MPIEXEC_TRACE_LIBS=<arg>

Arguments

<arg> String parameter

<list> Blank separated list of the libraries to preload. The default value is
vt

Description

Set this environment variable to choose an alternative library for preloading through the -

trace option.

I_MPI_JOB_CHECK_LIBS

Choose the libraries to preload through the -check_mpi option.

Syntax

I_MPI_JOB_CHECK_LIBS=<arg>

Arguments

<arg> String parameter

<list> Blank separated list of the libraries to preload. The default value is
vtmc

37

Description

Set this environment variable to choose an alternative library for preloading through the -

check_mpi option.

I_MPI_HYDRA_BRANCH_COUNT

Set the hierarchical branch count.

Syntax

I_MPI_HYDRA_BRANCH_COUNT =<num>

Arguments

<num> Number

<n> >= 0  The default value is -1 if less than 128 nodes are used. This

also means that there is no hierarchical structure

 The default value is 32 if more than 127 nodes are used

Description

Set this environment variable to restrict the number of child management processes launched by

the mpiexec.hydra operation or by each pmi_proxy management process.

I_MPI_HYDRA_PMI_AGGREGATE

Turn on/off aggregation of the PMI messages.

Syntax

I_MPI_HYDRA_PMI_AGGREGATE=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Enable PMI message aggregation. This is the default value

disable | no | off | 0 Disable PMI message aggregation

Description

Set this environment variable to enable/disable aggregation of PMI messages .

I_MPI_HYDRA_GDB_REMOTE_SHELL

Set the remote shell command to run GNU* debugger.

Syntax

I_MPI_HYDRA_GDB_REMOTE_SHELL=<arg>

Intel® MPI Library Reference Manual for Linux* OS

38

Arguments

<arg> String parameter

ssh Secure Shell (SSH). This is the default value

rsh Remote shell (RSH)

Description

Set this environment variable to specify the remote shell command to run the GNU* debugger on

the remote machines. You can use this environment variable to specify any shell command that
has the same syntax as SSH or RSH.

I_MPI_ HYDRA_JMI_LIBRARY

Define the default setting of the JMI library.

Syntax

I_MPI_HYDRA_JMI_LIBRARY=<value>

Arguments

<value> Define a string value, name, or path to JMI dynamic library

libjmi_slurm.so.1.1 |

libjmi_pbs.so.1.0
Set the library name or full path to library name. The default

value is libjmi.so

Description

Set this environment variable to define the JMI library to be loaded by the Hydra* processor

manager. Set the full path to the library if the path is not mentioned in the

LD_LIBRARY_PATH environment variable. If the mpirun command is used, you do not need to set

this environment variable. The JMI library is automatically detected and set.

I_MPI_HYDRA_IFACE

Set the network interface.

Syntax

I_MPI_HYDRA_IFACE=<arg>

Arguments

<arg> String parameter

<network interface> The network interface configured in your system

Description

Set this environment variable to specify the network interface to use. For example, use -iface

ib0, if the IP emulation of your InfiniBand* network is configured on ib0.

I_MPI_HYDRA_DEMUX

39

Set the demultiplexer (demux) mode.

Syntax

I_MPI_HYDRA_DEMUX=<arg>

Arguments

<arg> String parameter

poll Set poll as the multiple I/O demultiplexer (demux) mode

engine. This is the default value.

select Set select as the multiple I/O demultiplexer (demux) mode

engine

Description

Set this environment variable to specify the multiple I/O demux mode engine. The default is Poll.

I_MPI_HYDRA_CLEANUP

Control the creation of the default mpicleanup input file.

Syntax

I_MPI_HYDRA_CLEANUP=<value>

Arguments

<value> Binary indicator

enable | yes | on | 1 Enable the mpicleanup input file creation

disable | no | off | 0
Disable the mpicleanup input file creation. This is the default

value

Description

Set the I_MPI_HYDRA_CLEANUP environment variable to create the input file for the mpicleanup

utility.

I_MPI_TMPDIR

(TMPDIR)

Set the temporary directory.

Syntax

I_MPI_TMPDIR=<arg>

Arguments

<arg> String parameter

Intel® MPI Library Reference Manual for Linux* OS

40

<path> Set the temporary directory. The default value is /tmp

Description

Set this environment variable to specify the temporary directory to store the mpicleanup input

file.

I_MPI_JOB_RESPECT_PROCESS_PLACEMENT

Specify whether to use the job scheduler provided process-per-node parameter.

Syntax

I_MPI_JOB_RESPECT_PROCESS_PLACEMENT=<arg>

Arguments

<value> Binary indicator

enable | yes | on | 1 Use the process placement provided by job scheduler. This is

the default value

disable | no | off | 0 Do not use the process placement provided by job scheduler

Description

If you set I_MPI_JOB_RESPECT_PROCESS_PLACEMENT=enable, then Hydra process manager uses

PPN provided by job scheduler.

If you set I_MPI_JOB_RESPECT_PROCESS_PLACEMENT = disable, then Hydra process manager

uses PPN provided in command line option or using I_MPI_PERHOST environment variable.

2.3.5. Cleaning up Utility

mpicleanup

Clean up the environment after an abnormally terminated MPI run under the

mpiexec.hydra process manager.

Syntax

mpicleanup [-i <input_file> | -t -f <hostsfile>] [-r <rshcmd>] \

 [-b <branch_count>] [-p] [-s | -d] [-h] [-V]

 or

mpicleanup [--input <input_file> | --total --file <hostsfile>] \

 [--rsh <rshcmd>] [--branch <branch_count>] [--parallel] \

 [--silent | --verbose] [--help] [--version]

41

Arguments

-i <input_file> |

--input <input_file>
Specify the input file generated by mpiexec.hydra. The

default value is mpiexec_${username}_$PPID.log located in

the temporary directory determined by the values of the

I_MPI_TMPDIR or TMPDIR environment variables, or in

the /tmp directory.

-t | --total Use the total mode to stop all user processes on the specified

machines. This option is not supported for the root user.

-f <hostsfile> |

--file <hostsfile>

Specify the file containing the list of machines to clean up.

-r <rshcmd> |

--rsh <rshcmd>

Specify the remote shell to use. The default shell is ssh.

-b <branch_count> |

--branch

<branch_count>

Define the number of the child processes. The default value is
32.

-p |

--parallel

Use the parallel launch mode. This option is only applicable if

all hosts are available. Otherwise a part of machines may stay
in an undefined state.

-s | --silent Suppress extra output generation.

-d | --verbose Output verbose information.

-h | --help Display a help message.

-V | --version Display Intel® MPI Library version information.

Description

Use this command to clean up the environment after an abnormal MPI job termination.

For example, use the following command to stop processes mentioned in the input file generated

by the prior mpiexec.hydra invocation:

> mpicleanup

or

> mpicleanup --input /path/to/input.file

Use the following command to stop all your user processes on the machines specified in the

hostsfile file:

> mpicleanup --file hostsfile --total

Intel® MPI Library Reference Manual for Linux* OS

42

2.3.6. Checkpoint-Restart Support

The Checkpoint-Restart feature in Intel® MPI Library is designed to be application transparent.

You can access to the Checkpoint-Restart functionality through the MPI process management
interface. The Checkpoint-Restart options and environment variables are applicable to the Hydra

process manager only.

NOTE:

The Checkpoint-Restart feature requires the OFA* network module. You can choose the OFA

network module, for example, with the I_MPI_FABRICS environment variable by setting the

value to ofa, or the -ib option.

NOTE:

To enable the Checkpoint-Restart feature, set the following:

 1 for I_MPI_OFA_DYNAMIC_QPS environment variable

 0 for I_MPI_OFA_NUM_RDMA_CONNECTIONS environment variable

NOTE:

Install the Berkeley Lab Checkpoint/Restart* (BLCR) Software for the Checkpoint-Restart

function.

2.3.6.1. Global Options

-ckpoint<switch>

Arguments

<switch> Checkpoint switch

enable | yes | on | 1 Enables the check point function for the application started

disable | no | off | 0 Disables the check point function for the application started. This

is the default value

Use this option to enable/disable checkpoints capability. When this capability is disabled, other

checkpoint options are ignored.

-ckpoint-interval<sec>

Arguments

<sec> Interval between consecutive checkpoints in seconds

Use this option to turn on timer driven checkpoints. See also Timer Driven Checkpoint. The

checkpoints are taken every <sec> seconds. If this option is not specified, signal driven checkpoint

function may be used. See Explicit Signal Driven Checkpoint for more details.

43

-ckpoint-preserve<N>

Arguments

<N> Maximal number of checkpoint images kept. The default value is
1

Use this option while running the checkpoint function to keep last <N> checkpoints to reduce

checkpoint image space. By default, only the last checkpoint is kept.

-restart

Use this option to restart an application from one of the stored checkpoints. -ckpointlib, -

ckpoint-prefix and -ckpoint-num options are meaningful for restarting. The executable name

may be provided to the process manager, but is ignored. Taking checkpoints is allowed for the

restarted application, so -restart option may be accompanied with -ckpoint and other

applicable checkpoint options.

-ckpoint-num<N>

Arguments

<N> Identifier of the checkpoint image to restart an application with.

Valid values are any number equal or lower than the last
checkpoint number. The default is the last checkpoint number.

Use this option while restarting an application. The checkpoint number <N> (counting from 0) is

taken as a restart point. To determine the best choice for this value, examine the checkpoint

storage directory setting with the -ckpoint-prefix option.

NOTE:

The number of images determined by the -ckpoint-preserve option is kept at maximum.

The application will abort with an error message during startup if this checkpoint does not exist. By

default, the last checkpoint is selected.

2.3.6.2. Local Options

-ckpointlib<lib>

Arguments

<lib> Checkpoint-Restart system library

blcr Berkeley Lab Checkpoint/Restart* (BLCR) Library. This is the

default value

Use this option to select underlying Checkpoint-Restart system library. Only the Berkeley Lab

Checkpoint/Restart* (BLCR) Library is supported.

Intel® MPI Library Reference Manual for Linux* OS

44

NOTE:

You need to provide the same option when using the checkpoint function, or when restarting

the application.

-ckpoint-prefix<dir>

Arguments

<dir> The directory to store checkpoints. The default value is /tmp

Use this option to specify a directory to store checkpoints. By default, /tmp is used. The directory

<dir> should be writable, otherwise an error will be raised during process launch, and the

application will abort with an error message.

NOTE:

You need to provide the same option when using the checkpoint function, or when restarting

the application.

-ckpoint-tmp-prefix<dir>

Arguments

<dir> The directory to store temporary checkpoints. The default value

is /tmp

Use this option to indicate the directory to store temporary checkpoints. Checkpoints are migrated

from –ckpoint-tmp-prefix to the directory specified in –ckpoint-prefix. The directory <dir>

should be writable, otherwise the application will abort during startup with an error message.
Temporary storage is not used if the option is not set.

-ckpoint-logfile<file>

Use this option for monitoring checkpoint activity, the trace is dumped into <file>. You should be

able to write in <file>, otherwise the application will abort during startup with an error message.

This is an optional feature.

2.3.6.3. Environment Variables

I_MPI_CKPOINT

Syntax

I_MPI_CKPOINT=<switch>

Arguments

<switch> Checkpoint switch

enable | yes | on | 1 Enables the check point function for the application started

45

disable | no | off | 0 Disables the check point function for the application started. This

is the default value

Description

Use this variable to turn on taking checkpoints capability. This has the same effect as the -

ckpoint option. If you have set the -ckpoint option, the Hydra process manager sets the

I_MPI_CKPOINT even if you do not set this environment variable.

I_MPI_CKPOINTLIB

Syntax

I_MPI_CKPOINTLIB=<lib>

Arguments

<lib> Checkpoint-Restart system library

blcr Berkeley Lab Checkpoint/Restart* (BLCR) Library. This is the

default value

Description

Use this variable to select underlying Checkpoint-Restart system library. This has the same effect

as the -ckpointlib option.

I_MPI_CKPOINT_PREFIX

Syntax

I_MPI_CKPOINT_PREFIX=<dir>

Arguments

<dir> The directory to store checkpoints. The default value is /tmp

Description

Use this variable to specify a directory to store checkpoints. This has the same effect as the -

ckpoint-prefix option.

I_MPI_CKPOINT_TMP_PREFIX

Syntax

I_MPI_CKPOINT_TMP_PREFIX=<dir>

Arguments

<dir> The directory to store temporary checkpoints

Intel® MPI Library Reference Manual for Linux* OS

46

Description

Use this variable to indicate storage of temporary checkpoints while -ckpoint-prefix indicates

permanent storage. This has the same effect as the -ckpoint-tmp-prefix option.

I_MPI_CKPOINT_INTERVAL

Syntax

I_MPI_CKPOINT_INTERVAL=<sec>

Arguments

<sec> Interval between consecutive checkpoints in seconds

Description

Use this variable to turn on timer driven checkpoints. This has the same effect as the -ckpoint-

interval option.

I_MPI_CKPOINT_PRESERVE

Syntax

I_MPI_CKPOINT_PRESERVE=<N>

Arguments

<N> Maximal number of checkpoint images kept. The default value is
1

Description

Use this option while running the checkpoint function to keep last <N> checkpoints to reduce

checkpoint image space. This has the same effect as the -ckpoint-preserve option.

I_MPI_CKPOINT_LOGFILE

Syntax

I_MPI_CKPOINT_LOGFILE=<file>

Arguments

<file> The file keeping the trace for checkpoint activity

Description

Use this option for checkpoint activity monitoring. The trace is dumped into <file>. This has the

same effect as the -ckpoint-logfile option.

I_MPI_CKPOINT_NUM

47

Syntax

I_MPI_CKPOINT_NUM=<N>

Arguments

<N> Number of checkpoint image to restart an application with

Description

Use this option while restarting application. This has the same effect as the -ckpoint-num option.

I_MPI_RESTART

Syntax

I_MPI_RESTART=<switch>

Arguments

<switch> Restart switch

enable | yes | on | 1 Enables the restart of the application from one of the stored

checkpoints.

disable | no | off | 0 Disables the restart of the application. This is the default value.

Description

Use this variable to restart an application from one of the stored checkpoints. Using this variable

has the same effect as -restart option.

2.3.6.4. Running MPI Applications

The checkpoint-restart feature is available with the Hydra process launcher (mpiexec.hydra). The

launcher provides two mutually exclusive methods of taking checkpoints:

 By timers

 By explicit signal

You can provide directory paths where checkpoints can be stored temporarily and permanently.

 Timer Driven Checkpoint

In the following example, a checkpoint is taken every 3600 seconds (=1hour). The checkpoints are

stored in a directory called ckptdir. Each node generates one checkpoint which is named by the

node number and number of that checkpoint.

user@head $ mpiexec.hydra -ckpoint on -ckpoint-prefix /home/user/ckptdir –

ckpoint-interval 3600 -ckpointlib blcr –n 32 –f hosts /home/user/myapp

 Explicit Signal Driven Checkpoint

In the following example, an application is started and then an explicit signal (SIGUSR1) is passed

to the application to take a checkpoint. The checkpoints are stored in a directory called ckptdir.

Intel® MPI Library Reference Manual for Linux* OS

48

user@head $ mpiexec.hydra -ckpoint on -ckpoint-prefix /home/user/ckptdir -

ckpointlib blcr –n 32 –f hosts /home/user/myapp

...

user@head $ kill –s SIGUSR1 <PID of mpiexec.hydra>

It is necessary and sufficient for you to signal the mpiexec.hydra process on node head.

 Using Local Storage

In the following example, there are two locations for storing checkpoints.

 Temporary location: indicated in the argument to –ckpoint-tmp-prefix

 Permanent location: indicated in the argument to –ckpoint--prefix

user@head $ mpiexec.hydra -ckpoint on -ckpoint-tmp-prefix /ssd/user/ckptdir

–ckpoint-prefix /home/user/ckptdir -ckpointlib blcr –n 32 –f hosts

/home/user/myapp

2.3.6.5. Restarting MPI Applications

The following is an example of restarting an application from checkpoint number <N>.

user@head $ mpiexec.hydra -restart –ckpoint-prefix /home/user/ckptdir -

ckpointlib blcr -ckpoint-num <N> –n 32 –f hosts

When restarting, you need to revise the "hosts" file to eliminate any dead or unavailable nodes.

Also, providing the executable name is not necessary when restarting because it is already stored
in the checkpoint images.

2.3.6.6. Viewing Checkpoint Activity in Log File

The following is an example of launching an MPI job and specifying a checkpoint log file so that

you can watch the checkpoint activity.

user@head $ mpiexec.hydra -ckpoint on –ckpoint-logfile /home/user/ckpt.log -

ckpoint-tmp-prefix /ssd/user/ckptdir –ckpoint-prefix /home/user/ckptdir -

ckpointlib blcr –n 32 –f hosts /home/user/myapp

The following output is a sample log:

[Mon Dec 19 13:31:36 2011] cst-linux Checkpoint log initialized (master mpiexec

pid 10687, 48 processes, 6 nodes)

[Mon Dec 19 13:31:36 2011] cst-linux Permanent checkpoint storage:

/mnt/lustre/user

[Mon Dec 19 13:31:36 2011] cst-linux Temporary checkpoint storage: /tmp

[Mon Dec 19 13:32:06 2011] cst-linux Started checkpoint number 0 ...

[Mon Dec 19 13:33:00 2011] cst-linux Finished checkpoint number 0.

[Mon Dec 19 13:33:00 2011] cst-linux Moving checkpoint 0 from /tmp to

/mnt/lustre/user ...

[Mon Dec 19 13:38:00 2011] cst-linux Moved checkpoint 0 from /tmp to

/mnt/lustre/user

49

2.3.6.7. Automatic Cleanup of Previous Checkpoints

Checkpoint images are large; thus, Intel® MPI Library only keeps the last useful checkpoint by

default. The following is an example to keep <N> previous checkpoints. The flag is –ckpoint-

preserve <N>. The default value of –ckpoint-preserve is 1 (keep only the last checkpoint).

user@head $ mpiexec.hydra -ckpoint on –ckpoint-preserve <N> -ckpoint-tmp-prefix

/ssd/user/ckptdir –ckpoint-prefix /home/user/ckptdir -ckpointlib blcr –n 32 –f

hosts /home/user/myapp

2.4. Intel® Xeon Phi™ Coprocessor Support

This topic concentrates on the Intel® MPI Library specifics related to the support of the Intel®

Xeon Phi™ Coprocessor (codename: Knights Corner) based on Intel® Many Integrated Core
Architecture (Intel® MIC Architecture).

2.4.1. Usage Model

To use the Intel MPI Library on Intel® Xeon Phi™ Coprocessor (codename: Knights Corner),

ensure that:

 Each host and each Intel® Xeon Phi™ coprocessor must have a unique IP address and
symbolic name, which is the same as to classic cluster.

 Password-less access between host and Intel® Xeon Phi™ Coprocessor by ssh is established.

If the connection fails, the following situations might cause the failure:

 The version of Intel® MIC Software Stack you used is out of date. Install a newer version.

 The iptables service is running on the host. Stop that service.

 The route is incomplete. Add the missing routes.

Refer to the system administrator and Intel® MIC Software Stack readme to configure the settings

for the IP connectivity.

When using Intel MPI Library on an Intel Xeon Phi coprocessor, consider Intel Xeon Phi

coprocessor card to be another cluster node with a different Intel® architecture. The way that MPI
features work for the Intel Xeon Phi coprocessor is similar to the way they work for an Intel® Xeon
processor.

For example, MPI libraries may be available on both Intel Xeon processor and Intel Xeon Phi

coprocessor through an NFS share that has the same path for Intel Xeon processor host and Intel
Xeon Phi coprocessor; MPI tasks may be started from Intel Xeon processor host or Intel Xeon Phi
coprocessor, etc.

To build an application for running on the Intel Xeon Phi coprocessor and the host node, go

through the following steps:

1. Establish environment settings for the compiler and for the Intel MPI Library:

(host)$. <compiler_installdir>/bin/compilervars.sh em64t

(host)$. <mpi_installdir>/em64t/bin/mpivars.sh

Intel® MPI Library Reference Manual for Linux* OS

50

2. Build your application for Intel MIC Architecture, for example:

(host)$ mpiicc -mmic test.c -o test_hello.mic

3. Build your application for Intel 64 Architecture, for example:

(host)$ mpiicc test.c -o test_hello

To run an application on the Intel Xeon Phi coprocessor and the host node, go through the

following steps:

1. Ensure that NFS is properly set-up between the hosts and the Intel Xeon Phi coprocessor,

which is the recommended way for using Intel MPI Library on Intel MIC Architecture.

For information on how to set up NFS on the Intel Xeon Phi coprocessor, see

http://software.intel.com/en-us/articles/intel-mpi-library-for-linux-kb/all/ or
http://software.intel.com/mic-developer .

2. Establish environment settings for the Intel MPI Library:

(host)$. <mpi_installdir>/em64t/bin/mpivars.sh

3. Launch the executable file from host, for example:

(host)$ export I_MPI_MIC=1

(host)$ mpiexec.hydra -n 2 -host <host ID> ./test_hello : -n 2 -host

<coprocessor ID> ./test_hello.mic

NOTE:

See Intel® MPI Library for Linux* OS Reference Manual for -configfile, -hostfile and

-machinefile options which also can be used.

To run the application on Intel Xeon Phi coprocessor only, follow the steps described above except
for the step of building the application for Intel 64 Architecture. Meanwhile, ensure that the
hostfile only contains the Intel Xeon Phi coprocessor name.

For more details, see http://software.intel.com/en-us/articles/intel-mpi-library-for-linux-kb/all/

and http://software.intel.com/mic-developer.

2.4.2. Environment Variables

I_MPI_MIC

Syntax

I_MPI_MIC=<value>

Arguments

<value> Intel® Xeon Phi™ recognition

enable | yes | on | 1 Enable the Intel Xeon Phi coprocessor recognition

http://software.intel.com/en-us/articles/intel-mpi-library-for-linux-kb/all/
http://software.intel.com/mic-developer
http://software.intel.com/en-us/articles/intel-mpi-library-for-linux-kb/all/
http://software.intel.com/mic-developer

51

disable | no | off | 0 Disables the Intel Xeon Phi coprocessor recognition. This is the

default value

Description

Set this environment variable to control whether the Intel Xeon processor of the Intel® MPI

Library will try to detect and work with the Intel® MIC Architecture components.

If the value of environment variable I_MPI_MIC is enable, the default value of environment

variable I_MPI_SSHM is enable.

If the value of environment variable I_MPI_MIC is enable, the default value of environment

variable I_MPI_DAPL_DIRECT_COPY_THRESHOLD is 4906 and 4096,262144 in case of multiple

providers availability.

If the value of environment variable I_MPI_MIC is enable, the default value of environment

variable I_MPI_DAPL_BUFFER_SIZE is 4352.

NOTE:

This is a provisional variable and is only temporarily introduced, until the architecture detection

and other related matters are clarified.

I_MPI_MIC_PREFIX

Syntax

I_MPI_MIC_PREFIX=<value>

Arguments

<value> Specify a string as the prefix of an Intel Xeon Phi coprocessor file

name. The default value is an empty string

Description

Set this environment variable to add a prefix to a host executable name to get a corresponding

Intel Xeon Phi coprocessor executable file name.

For example, set different locations as the value for the I_MPI_MIC_PREFIX environment variable

to distinguish Intel MIC Architecture and Intel® 64 Architecture executable files:

 (host)$ mpiicc test.c -o test_hello

 (host)$ mpiicc -mmic test.c -o ./MIC/test_hello

 (host)$ export I_MPI_MIC=1

 (host)$ export I_MPI_MIC_PREFIX=./MIC/

 (host)$ mpiexec.hydra -n 4 -hostfile <hostfile> test_hello

In the example, ./test_hello binary is launched on Intel® 64 Architecture nodes

and ./MIC/test_hello binary is launched on Intel Xeon Phi coprocessor nodes.

Intel® MPI Library Reference Manual for Linux* OS

52

I_MPI_MIC_POSTFIX

Syntax

I_MPI_MIC_POSTFIX=<value>

Arguments

<value> Specify a string as the postfix of an Intel Xeon Phi coprocessor

file name. The default value is an empty string

Description

Set this environment variable to add a postfix to a host executable name to get a corresponding

Intel Xeon Phi coprocessor executable name.

For example, set different names as the value for the I_MPI_MIC_POSTFIX environment variable

to distinguish Intel Xeon Phi coprocessor and Intel 64 Architecture executable files:

 (host)$ mpiicc test.c -o test_hello

 (host)$ mpiicc -mmic test.c -o test_hello.mic

 (host)$ export I_MPI_MIC=1

 (host)$ export I_MPI_MIC_POSTFIX=.mic

 (host)$ mpiexec.hydra -n 4 -hostfile <hostfile> test_hello

In the example, test_hello binary is launched on Intel 64 Architecture nodes and

test_hello.mic binary on Intel Xeon Phi coprocessor nodes.

I_MPI_DAPL_PROVIDER_LIST

Syntax

I_MPI_DAPL_PROVIDER_LIST=<primary provider>[,<local secondary provider>

[,<remote secondary provider>]]

Arguments

<primary provider> Provides the best latency and available on all network

segments (cross box and within box)

<local secondary

provider>
Provides the best bandwidth for local configurations (within

box)

<remote secondary

provider>
Provides best bandwidth for remote configurations (cross

box)

Description

Use this variable to define the DAPL providers to load.

With Intel® Manycore Platform Software Stack (Intel® MPSS), the arguments of

I_MPI_DAPL_PROVIDER_LIST are set as the following values:

 <primary provider>- CCL-direct

53

 <local secondary provider>- IBSCIF

 <remote secondary provider>- CCL-proxy

Thus, the setting is I_MPI_DAPL_PROVIDER_LIST=<CCL-direct>[,<IBSCIF>[,<CCL-proxy>]]

The following configuration is an example with the default dat.conf provided with Intel MPSS:

I_MPI_DAPL_PROVIDER_LIST=ofa-v2-mlx4_0-1u,ofa-v2-scif0,ofa-v2-mcm-1

You can adjust the threshold for secondary provider through the

I_MPI_DAPL_DIRECT_COPY_THRESHOLD environment variable (<secondary provider

threshold>):

I_MPI_DAPL_DIRECT_COPY_THRESHOLD=<primary provider direct copy

threshold>[,<secondary provider threshold>]

<primary provider direct copy threshold> has to be lower than <secondary provider

threshold>.

If the environment variable I_MPI_DAPL_PROVIDER_LIST contains a list of values, then the

syntax of the following environment variables may be extended by the values related to all

corresponding providers.

 I_MPI_DAPL_DIRECT_COPY_THRESHOLD

 I_MPI_DAPL_TRANSLATION_CACHE

 I_MPI_DAPL_TRANSLATION_CACHE_AVL_TREE

 I_MPI_DAPL_CONN_EVD_SIZE

 I_MPI_DAPL_RDMA_RNDV_WRITE

If only single value is set, this value applies to all providers. In case of mismatch or incorrect

values, the default value is used for all providers.

For example:

export I_MPI_DAPL_PROVIDER_LIST=ofa-v2-mlx4_0-1,ofa-v2-scif0

export I_MPI_DAPL_TRANSLATION_CACHE=enable,disable

This I_MPI_DAPL_TRANSLATION_CACHE setting turns on the memory registration cache for the

first provider; but turns it off for the second one.

I_MPI_ENV_PREFIX_LIST

Define the prefixes of environment variables for the intended platforms.

Syntax

I_MPI_ENV_PREFIX_LIST=[platform:prefix][,...]

Argument

platform The intended platform (string).

Intel® MPI Library Reference Manual for Linux* OS

54

Options: htn,nhm,wsm,snb,ivb

See I_MPI_PLATFORM for the detail options descriptions

prefix
A prefix (string) for a name of an environment variable to
be used for the intended platform

Description

Set this environment variable to define the prefix of environment variables to be used for the

intended platform.

If you specify a prefix in I_MPI_ENV_PREFIX_LIST for an environment variable, the prefixed

environment variable overrides the respective non-prefixed environment variable on the intended

platform.

If you do not specify I_MPI_ENV_PREFIX_LIST, environment variables are applied to all platforms.

NOTE:

Use the lower case when you specify the platform names.

Examples

1. I_MPI_ENV_PREFIX_LIST=platform:prefix

<NAME>=value is applied to all systems.

<prefix>_<NAME>=value defines <NAME>=value for all <platform> systems.

2. Assume that some machines are on the Intel® microarchitecture code name Sandy Bridge

based platform, and the rest machines are on other architectures based platforms. The

environment variable OMP_NUM_THREADS value is 3 on all platforms.

To set OMP_NUM_THREADS=5 for the ranks on the Intel® microarchitecture code name Sandy

Bridge based platform, specify the prefix in I_MPI_ENV_PREFIX_LIST for OMP_NUM_THREADS

with the following configurations:

I_MPI_ENV_PREFIX_LIST=snb:<prefix>

OMP_NUM_THREADS=3

<prefix>_OMP_NUM_THREADS=5

2.4.3. Compiler Commands

The following table lists available MPI compiler commands and Intel® Composer XE 2013 for

Linux* OS for Intel® MIC Architecture, languages, and application binary interfaces (ABIs) that
they support.

Compiler

Command

Default Compiler Supported

Language(s)

Supported ABI(s)

mpiicc icc C 64 bit

55

mpiicpc icpc C++ 64 bit

mpiifort ifort Fortran77/Fortran 95 /64 bit

The compiler commands have the following common features:

 The compiler commands reside in the <installdir>/em64t/bin directory.

 The environment settings should be established by sourcing the

<installdir>/em64t/bin/mpivars.sh script.

 To compile a heterogeneous MPI application, compile it twice: one time for Intel® 64
Architecture and another time for Intel® MIC Architecture.

 To distinguish targeted architectures, the scripts parse the underlying compiler options. If they

detect the compiler options that target Intel® MIC Architecture (such as -mmic) is currently

used by Intel® Composer XE 2013 for Linux* OS for Intel® MIC Architecture, they create an
Intel® MIC Compiler executable file. Otherwise, they create an Intel® Xeon processor
executable file.

 GNU* Compiler use requires that the compiler be specified with -cc/-cxx/-fc/-f77/-f90"

options or through the environment variables described in the Reference Manual. For example:

(host)$ mpicc -cc=/usr/linux-k1om-4.7/bin/x86_64-k1om-linux-gcc

-mmic test.c -o test_hello.mic

NOTE:

Use different file names and/or locations to distinguish Intel® MIC Architecture and Intel® 64

Architecture executable files.

2.5. Multipurpose Daemon Commands

mpd

Start Multipurpose daemon* (MPD).

Syntax

mpd [--help] [-V] [--version] [--host=<host> --port=<portnum>] \

 [--noconsole] [--trace] [--echo] [--daemon] [--bulletproof]\

 [--i fhn <interface/hostname>] [--listenport <listenport>]

Arguments

--help Display a help message

-V | --version Display the Intel® MPI Library version information

Intel® MPI Library Reference Manual for Linux* OS

56

-h <host> -p <portnum>

|

--host=<host> --port=

<portnum>

Specify the host and port to be used for entering an existing

ring. The --host and --port options must be specified

together

-n | --noconsole Do not create a console at startup

-t | --trace Print internal MPD trace information

-e | --echo Print a port number at startup to which other mpds may

connect

-d | --daemon Start mpd in daemon mode. By default, the interactive mode is

enabled

--bulletproof Turn MPD bulletproofing on

--ifhn=<interface/

hostname>

Specify <interface/hostname> to use for MPD

communications

-l <listenport> |

--listenport=

<listenport>

Specify the mpd listening port

Description

Multipurpose daemon* (MPD) is the Intel® MPI Library process management system for starting

parallel jobs. Before running a job, start mpd daemons on each host and connect them into a ring.

Long parameter names may be abbreviated to their first letters by using only one hyphen and no
equal sign. For example,

$ mpd -h masterhost -p 4268 -n

is equivalent to

$ mpd --host=masterhost --port=4268 -noconsole

If a file named .mpd.conf is available in the user's home directory, only the user can have read

and write privileges. The file must minimally contain a line with secretword=<secretword>. If

you want to run MPD as root, create the mpd.conf file in the /etc directory instead of .mpd.conf

in the root's home directory to run mpd as root. Avoid starting the MPD ring under the root account.

mpdboot

Start mpd ring.

Syntax

mpdboot [-h] [-V] [-n <#nodes>] [-f <hostsfile>] [-r <rshcmd>] \

 [-u <user>] [-m <mpdcmd>] [--loccons] [--remcons] \

57

 [-s] [-d] [-v] [-1] [--ncpus=<ncpus>] [-o] \

 [-b <maxbranch>] [-p]

or

mpdboot [--help] [--version] [--totalnum=<#nodes>] \

 [--file=<hostsfile>] [--rsh=<rshcmd>] [--user=<user>] \

 [--mpd=<mpdcmd>] [--loccons] [--remcons] [--shell] \

 [--debug] [--verbose] [-1] [--ncpus=<ncpus>] [--ordered]

 [--maxbranch=<maxbranch>] [--parallel-startup]

Arguments

-h | --help Display a help message

-V | --version Display Intel® MPI Library version information

-d | --debug Print debug information

-v | --verbose Print more information. Show the <rshcmd> attempts

-n <#nodes> |

--totalnum=<#nodes>

Number of nodes in mpd.hosts on which daemons are started

-r <rshcmd> |

--rsh=<rshcmd>

Specify remote shell to start daemons and jobs. The default
value is ssh

-f <hostsfile> |

--file=<hostsfile>

Path/name of the file that has the list of machine names on

which the daemons are started

-1 Enable starting multiple mpd per machine

-m <mpdcmd> |

--mpd=<mpdcms>

Specify the full path name of the mpd on the remote hosts

-s | --shell Specify the shell

-u <user> | --

user=<user>
Specify the user

--loccons Do not create local MPD consoles

--remcons Do not create remote MPD consoles

--ncpus=<ncpus> Indicate how many processors to use on the local machine

(other nodes are listed in the hosts file)

Intel® MPI Library Reference Manual for Linux* OS

58

-o | --ordered Start all the mpd daemons in the order as specified in the

mpd.hosts file

-b <maxbranch> |

--maxbranch=<maxbranch>

Use this option to indicate the maximum number of the mpd

daemons to enter the mpd ring under another. This helps to

control the parallelism of the mpd ring start. The default value

is four

-p |--parallel-startup Use this option to allow parallel fast starting of mpd daemons

under one local root. No daemon checking is performed. This
option also supports shells which do not transfer the output
from the remote commands

Description

Start the mpd daemons on the specified number of nodes by providing a list of node names in

<mpd.hosts>.

The mpd daemons are started using the ssh command by default. If the ssh connectivity is not

enabled, use the -r rsh option to switch over to rsh. Make sure that all nodes in the cluster can

connect to each other through the ssh command without a password or, if the -r rsh option is

used, through the rsh command without a password.

NOTE:

The mpdboot command spawns an MPD daemon on the host machine, even if the machine

name is not listed in the mpd.hosts file.

mpdexit

Shut down a single mpd daemon.

Syntax

mpdexit [--help] [-V] [--version] <mpdid>

Arguments

--help Display a help message

-V | --version Display Intel® MPI Library version information

<mpdid> Specify the mpd daemon to kill

Description

Use this command to cause the single mpd daemon to exit. Use <mpdid> obtained through the

mpdtrace -l command in the form <hostname>_<port number>.

mpdallexit

Shut down all mpd daemons on all nodes.

59

Syntax

mpdallexit [--help] [-V] [--version]

Arguments

--help Display a help message

-V | --version Display Intel® MPI Library version information

Description

Use this command to shut down all MPD rings you own.

mpdcleanup

Clean up the environment after an mpd crash.

Syntax

mpdcleanup [-h] [-V] [-f <hostsfile>] [-r <rshcmd>] [-u <user>]\

 [-c <cleancmd>] [-a]

or

mpdcleanup [--help] [--version] [--file=<hostsfile>] \

 [--rsh=<rshcmd>] [--user=<user>] [--clean=<cleancmd>] \

 [--all]

Arguments

-h | --help Display a help message

-V | --version Display Intel® MPI Library version information

-f <hostsfile> |

--file=<hostsfile>

Specify the file containing a list of machines to clean up

-r <rshcmd> |

--rsh=<rshcmd>

Specify the remote shell to use

-u <user> |

--user=<user>

Specify the user

-c <cleancmd> |

--clean=<cleancmd>

Specify the command to use for removing the UNIX* socket.

The default command is /bin/rm -f

Intel® MPI Library Reference Manual for Linux* OS

60

-a | --all Kill all mpd daemons related to the current settings of the

I_MPI_JOB_CONTEXT environment variable on all hosts

specified in <hostsfile>

Description

Use this command to clean up the environment after an mpd crash. It removes the UNIX* socket

on local and remote machines or kills all mpd daemons related to the current environment

controlled by the I_MPI_JOB_CONTEXT environment variable.

For instance, use the following command to remove the UNIX sockets on machines specified in the

hostsfile file:

$ mpdcleanup --file=hostsfile

Use the following command to kill the mpd daemons on the machines specified in the hostsfile

file:

$ mpdcleanup --file=hostsfile --all

mpdtrace

Determine whether mpd is running.

Syntax

mpdtrace [--help] [-V] [--version] [-l]

Arguments

--help Display a help message

-V | --version Display Intel® MPI Library version information

-l Show MPD identifiers instead of the hostnames

Description

Use this command to list the hostnames or identifiers of all mpds in the ring. The output identifiers

have the form <hostname>_<port number>.

mpdcheck

Check for configuration problems on the host or print configuration information about this host.

Syntax

mpdcheck [-v] [-l] [-h] [--help] [-V] [--version]

mpdcheck -pc [-v] [-l]

mpdcheck -f <host_file> [-ssh] [-v] [-l]

mpdcheck -s [-v] [-l]

mpdcheck -c < server_host> <server_port> [-v] [-l]

61

Arguments

-h | --help Display a help message

-V | --version Display Intel® MPI Library version information

-pc Print configuration information about a local host

-f <host_file> Print information about the hosts listed in <host_file>

-ssh Invoke testing of ssh on each remote host. Use in conjunction

with the -f option

-s Run mpdcheck as a server on one host

-c <server_host>

<server_port>
Run mpdcheck as a client on the current or different host.

Connect to the <server_host> <server_port>

-l Print diagnostic messages in extended format

-v Print the actions that mpdcheck is performing

Description

Use this command to check configuration problems on the cluster nodes. Any output line that

starts with *** indicates a potential problem.

If you have problems running parallel jobs through mpd on one or more hosts, try to run the script

once on each of those hosts.

mpdringtest

Test the MPD ring.

Syntax

mpdringtest [--help] [-V] [--version] <number of loops>

Arguments

--help Display a help message

-V | --version Display Intel® MPI Library version information

<number of loops> Number of loops

Description

Use this command to test how long it takes for a message to circle the mpd ring.

mpdlistjobs

Intel® MPI Library Reference Manual for Linux* OS

62

Syntax

mpdlistjobs [-h] [-V] [-u <username>] [-a <jobalias>] [-j <jobid>]

or

mpdlistjobs [--help] [--version] [--user=<username>] \

[--alias=<jobalias>] [--jobid=<jobid>]

Arguments

-h | --help Display a help message

-V | --version Display Intel® MPI Library version information

-u <username>|

--user=<username>

List jobs of a particular user

-a <jobalias> | --

alias=<jobalias>
List information about the particular job specified by <jobalias>

-j <jobid> |

--jobid=<jobid>

List information about the particular job specified by <jobid>

Description

Use this command to list the running processes for a set of MPI jobs. All jobs for the current

machine are displayed by default.

mpdsigjob

Apply a signal to a process running an application.

Syntax

mpdsigjob [--help] [-V] [--version] <sigtype> \

[-j <jobid> | -a <jobalias>] [-s | -g]

Arguments

--help Display a help message

-V | --version Display Intel® MPI Library version information

<sigtype> Specify the signal type to send. Valid options are -j or -a.

-a <jobalias> Send a signal to the job specified by <jobalias>

-j <jobid> Send a signal to the job specified by <jobid>

-s Deliver a signal to a single user process

63

-g Deliver a signal to a group of processes. This is the default

behavior.

Description

Use this command to deliver a specific signal to the processes of a running job. The desired signal

is the first argument. Specify one of two options: -j or -a.

mpdkilljob

Terminate a job.

Syntax

mpdkilljob [--help] [-V] [--version] [<jobnum>] [-a <jobalias>]

Arguments

--help Display a help message

-V | --version Display Intel® MPI Library version information

<jobnum> Kill the job specified by <jobnum>

-a <jobalias> Kill the job specified by <jobalias>

Description

Use this command to kill the job specified by <jobnum> or by <jobalias>. Obtain <jobnum> and

<jobalias> from the mpdlistjobs command. The <jobid> field has the following format:

<jobnum>@<mpdid>.

mpdhelp

Print brief help concerning MPD commands.

Syntax

mpdhelp [-V] [--version]

Arguments

-V | --version Display Intel® MPI Library version information

Description

Use this command to obtain a brief help message concerning MPD commands.

2.5.1. Job Startup Commands

mpiexec

Intel® MPI Library Reference Manual for Linux* OS

64

Syntax

mpiexec <g-options> <l-options> <executable>

or

mpiexec <g-options> <l-options> <executable1> : \

<l-options> <executable2>

or

mpiexec -configfile <file>

Arguments

<g-options> Global options that apply to all MPI processes

<l-options> Local options that apply to a single arg-set

<executable> ./a.out or path/name of the executable file

<file> File with command-line options

Description

Use the first command-line syntax to start all MPI processes of the <executable> with the single

arg-set. For example, the following command executes a.out over the specified <# of

processes>:

$ mpiexec -n <# of processes> ./a.out

Use the second command-line syntax to start several MPI programs or the same MPI program with

different argument sets. For example, the following command runs each given executable on a

different host:

$ mpiexec -n 2 -host host1 ./a.out : \

 -n 2 -host host2 ./b.out

Use the third command-line syntax to read the command line from specified <file>. For a

command with a single arg-set, the entire command should be specified on a single line in <file>.

For a command with multiple arg-sets, each arg-set should be specified on a single, separate line

in <file>. Global options should always appear at the beginning of the first line in <file>.

MPD daemons must already be running in order for mpiexec to succeed.

NOTE:

If there is no "." in the PATH environment variable on all nodes in the cluster, specify

<executable> as ./a.out rather than a.out.

2.5.1.1. Extended Device Control Options

Use these options to select a specific fabric combination.

65

The exact combination of fabrics depends on the number of processes started per node.

If all processes start on one node, the Intel® MPI Library uses shm intra-node communication

regardless of the selected option from the list in this topic.

If the number of started processes is less than or equal to the number of available nodes, the

library uses the first available fabric from the list of fabrics for inter-node communication.

For other cases, the library uses shm for intra-node communication, and the first available fabric

from the list of fabrics for inter-node communication. See I_MPI_FABRICS and
I_MPI_FABRICS_LIST for more details.

The shm fabric is available for both Intel® and non-Intel microprocessors, but it may perform

additional optimizations for Intel microprocessors than it performs for non-Intel microprocessors.

-rdma

Use this option to select an RDMA-capable network fabric for inter-node communication. The

application attempts to use first available RDMA-capable network fabric from the list dapl or ofa. If

no such fabric is available, other fabrics from the list tcp or tmi are used. This option is equivalent

to the -genv I_MPI_FABRICS_LIST dapl,ofa,tcp,tmi -genv I_MPI_FALLBACK 1 setting.

-RDMA

Use this option to select an RDMA-capable network fabric for inter-node communication. The

application attempts to use first available RDMA-capable network fabric from the list dapl or ofa.

The application fails if no such fabric is found. This option is equivalent to the -

genv I_MPI_FABRICS_LIST dapl,ofa -genv I_MPI_FALLBACK 1 setting.

-dapl

Use this option to select DAPL capable network fabric for inter-node communication. The

application attempts to use DAPL capable network fabric. If no such fabric is available, another

fabric from the list tcp,tmi or ofa is used. This option is equivalent to the -

genv I_MPI_FABRICS_LIST dapl,tcp,tmi,ofa -genv I_MPI_FALLBACK 1 setting.

-DAPL

Use this option to select DAPL capable network fabric for inter-node communication. The

application fails if no such fabric is found. This option is equivalent to the -

genv I_MPI_FABRICS_LIST dapl -genv I_MPI_FALLBACK 0 setting.

-ib

Use this option to select OFA capable network fabric for inter-node communication. The application

attempts to use OFA capable network fabric. If no such fabric is available, another fabric from the

list dapl,tcp or tmi is used. This option is equivalent to the -genv I_MPI_FABRICS_LIST

ofa,dapl,tcp,tmi -genv I_MPI_FALLBACK 1 setting.

-IB

Use this option to select OFA capable network fabric for inter-node communication. The application

fails if no such fabric is found. This option is equivalent to the -genv I_MPI_FABRICS_LIST ofa

-genv I_MPI_FALLBACK 0 setting.

Intel® MPI Library Reference Manual for Linux* OS

66

-tmi

Use this option to select TMI capable network fabric for inter-node communication. The application

attempts to use TMI capable network fabric. If no such fabric is available, another fabric from the

list dapl,tcp or ofa is used. This option is equivalent to the -genv I_MPI_FABRICS_LIST

tmi,dapl,tcp,ofa -genv I_MPI_FALLBACK 1 setting.

-TMI

Use this option to select TMI capable network fabric for inter-node communication. The application

will fail if no such fabric is found. This option is equivalent to the -genv I_MPI_FABRICS_LIST

tmi -genv I_MPI_FALLBACK 0 setting.

-mx

Use this option to select Myrinet MX* network fabric for inter-node communication. The application

attempts to use Myrinet MX* network fabric. If no such fabric is available, another fabric from the

list dapl,tcp or ofa is used. This option is equivalent to the -genv I_MPI_FABRICS_LIST
tmi,dapl,tcp,ofa -genv I_MPI_TMI_PROVIDER mx -genv I_MPI_DAPL_PROVIDER mx -genv

I_MPI_FALLBACK 1 setting.

-MX

Use this option to select Myrinet MX* network fabric for inter-node communication. The application

fails if no such fabric is found. This option is equivalent to the -genv I_MPI_FABRICS_LIST tmi

-genv I_MPI_TMI_PROVIDER mx -genv I_MPI_FALLBACK 0 setting.

-psm

Use this option to select Intel® True Scale Fabric for inter-node communication. The application

attempts to use Intel True Scale Fabric. If no such fabric is available, another fabric from the list

dapl,tcp or ofa is used. This option is equivalent to the -genv I_MPI_FABRICS_LIST

tmi,dapl,tcp,ofa -genv I_MPI_TMI_PROVIDER psm -genv I_MPI_FALLBACK 1 setting.

-PSM

Use this option to select Intel True Scale Fabric for inter-node communication. The application fails

if no such fabric is found. This option is equivalent to the -genv I_MPI_FABRICS_LIST tmi -

genv I_MPI_TMI_PROVIDER psm -genv I_MPI_FALLBACK 0 setting.

2.5.1.2. Global Options

-version or -V

Use this option to display Intel® MPI Library version information.

-h or -help or --help

Use this option to display the mpiexec help message.

-tune [<arg >]

where:

67

<arg> = {<dir_name>, <configuration_file>}.

Use this option to optimize the Intel® MPI Library performance using data collected by the

mpitune utility.

If <arg> is not specified, the best-fit tuning options are selected for the given configuration. The

default location of the configuration file is <installdir>/<arch>/etc directory. You can override

this default location by explicitly stating: <arg>=<dir_name>. The provided configuration file is

used if you set <arg>=<configuration_file>.

See Automatic Tuning Utility for more details.

-nolocal

Use this option to avoid running <executable> on the host where the mpiexec is launched. This

option is useful for clusters that deploy a dedicated master node for starting the MPI jobs, and a
set of compute nodes for running the actual MPI processes.

-perhost <# of processes>

Use this option to place the indicated number of consecutive MPI processes on every host in a

group using round robin scheduling. The total number of processes to start is controlled by the -n

option.

The mpiexec command controls how the ranks of the processes are allocated to the nodes in the

cluster. By default, mpiexec uses round-robin assignment of ranks to nodes, executing

consecutive MPI processes on all processor cores.

To change this default behavior, set the number of processes per host by using the -perhost

option, and set the total number of processes by using the -n option. See Local Options for details.

The first <# of processes> indicated by the -perhost option is executed on the first host; the

next <# of processes> is executed on the next host, and so on.

See also the I_MPI_PERHOST environment variable.

-rr

Use this option to execute consecutive MPI processes on different hosts using round robin

scheduling. This option is equivalent to -perhost 1.

-grr <# of processes>

Use this option to place the indicated number of consecutive MPI processes on every host using

round robin scheduling. This option is equivalent to -perhost <# of processes>.

-ppn <# of processes>

Use this option to place the indicated number of consecutive MPI processes on every host using

round robin scheduling. This option is equivalent to -perhost <# of processes>.

-machinefile <machine file>

Use this option to control the process placement through <machine file>. The total number of

processes to start is controlled by the -n option.

Intel® MPI Library Reference Manual for Linux* OS

68

A machine file is a list of fully qualified or short host names, one name per line. Blank lines and

lines that start with # as the first character are ignored.

By repeating a host name, you place additional processes on this host. You can also use the

following format to avoid repetition of the same host name: <host name>:<number of

processes>. For example, the following machine files:

host1

host1

host2

host2

host3

is equivalent to:

host1:2

host2:2

host3

It is also possible to specify the network interface used for communication for each node: <host

name>:<number of processes> [ifhn=<interface_host_name>].

NOTE:

The -machinefile, -ppn, -rr, and -perhost options are intended for process distribution. If

used simultaneously, -machinefile takes precedence.

-configfile <filename>

Use this option to specify the file <filename> that contains command-line options. Blank lines and

lines that start with # as the first character are ignored. For example, the configuration file

contains the following commands to run the executable files a.out and b.out using the shm:dapl

fabric over host1 and host2 respectively:

-host host1 -env I_MPI_DEBUG 2 -env I_MPI_FABRICS shm:dapl -n 2 ./a.out

-host host2 -env I_MPI_DEBUG 2 -env I_MPI_FABRICS shm:dapl -n 2 ./b.out

To launch a MPI application according to the parameters above, use:

$ mpiexec -configfile <filename>

NOTE:

This option may only be used alone. It terminates parsing of the mpiexec command line.

-g<l-option>

69

Use this option to apply the named local option <l-option> globally. See Local Options for a list

of all local options. During the application startup, the default value is the -genvuser option.

NOTE:

Local options have higher priority than global options:

 The -genv option has the highest priority.

 The options -genvlist, -genvexcl have lower priority than the -genv option.

 The options -genvnone, -genvuser, -genvall have the lowest priority,.

-genv <ENVVAR> <value>

Use this option to set the <ENVVAR> environment variable to the specified <value> for all MPI

processes.

-genvuser

Use this option to propagate all user environment variables to all MPI processes, with the

exception of the following system environment variables: $HOSTNAME, $HOST, $HOSTTYPE,

$MACHTYPE, $OSTYPE. This is the default setting.

-genvall

Use this option to enable propagation of all environment variables to all MPI processes.

-genvnone

Use this option to suppress propagation of any environment variables to any MPI processes.

(SDK only) -trace [<profiling_library>] or -t [<profiling_library>]

Use this option to profile your MPI application using the indicated <profiling_library>. If the

<profiling_library> is not mentioned, the default profiling library libVT.so is used.

Set the I_MPI_JOB_TRACE_LIBS environment variable to override the default profiling library.

NOTE:

It is not necessary to link your application against the profiling library before execution.

 (SDK only) -check_mpi [<checking_library>]

Use this option to check your MPI application using the indicated <checking_library>. If

<checking_library> is not mentioned, the default checking library libVTmc.so is used.

Set the I_MPI_JOB_CHECK_LIBS environment variable to override the default checking library.

Intel® MPI Library Reference Manual for Linux* OS

70

NOTE:

It is not necessary to link your application against the checking library before execution.

-tv

Use this option to run <executable> under the TotalView* debugger. For example:

$ mpiexec -tv -n <# of processes> <executable>

See Environment Variables for information on how to select the TotalView* executable file.

NOTE:

Ensure the environment variable TVDSVRLAUNCHCMD=ssh because the TotalView* uses rsh by

default.

NOTE:

The TotalView* debugger has a feature to displays the message queue state of your MPI

program. To use the state display feature, do the following steps:

1. Run your <executable> with -tv option.

 $ mpiexec -tv -n <# of processes> <executable>

2. Answer Yes to the question about stopping the Python* job.

To display the internal state of the MPI library textually, select Tools > Message Queue

command. If you select the Process Window Tools > Message Queue Graph command, the
TotalView* displays a window that shows a graph of the current message queue state. For more
information, see TotalView*.

-tva <jobid>

Use this option to attach the TotalView* debugger to existing <jobid>. For example:

$ mpiexec -tva <jobid>

-tvsu

Use this option to run <executable> for later attachment with the TotalView* debugger. For

example:

$ mpiexec -tvsu -n <# of processes> <executable>

NOTE:

To debug the running Intel® MPI job, attach the TotalView* to the Python* instance that is

running the mpiexec script.

71

-gdb

Use this option to run <executable> under the GNU* debugger. For example:

$ mpiexec -gdb -n <# of processes> <executable>

-gdba <jobid>

Use this option to attach the GNU* debugger to the existing <jobid>. For example:

$ mpiexec -gdba <jobid>

-a <alias>

Use this option to assign <alias> to the job.

-ordered-output

Use this option to avoid intermingling of data output by the MPI processes. This option affects both

the standard output and standard error streams.

NOTE:

For this option to work, the last line output by each process must end with

the end-of-line (\n) character. Otherwise the application may stop

responding.

-m

Use this option to merge output lines.

-l

Use this option to insert the MPI process rank at the beginning of all lines written to the standard

output.

-s <spec>

Use this option to direct standard input to the specified MPI processes.

Arguments

<spec> Define MPI process ranks

all Use all processes

<l>,<m>,<n>
Specify an exact list and use processes <l>, <m> and <n> only. The

default value is zero

<k>,<l>-<m>,<n> Specify a range and use processes <k>, <l> through <m>, and <n>

Intel® MPI Library Reference Manual for Linux* OS

72

-noconf

Use this option to disable processing of the mpiexec configuration files described in the section

Configuration Files.

-ifhn <interface/hostname>

Use this option to specify the network interface for communication with the local MPD daemon;

where <interface/hostname> is an IP address or a hostname associated with the alternative

network interface.

-ecfn <filename>

Use this option to list XML exit codes to the file <filename>.

2.5.1.3. Local Options

-n <# of processes> or -np <# of processes>

Use this option to set the number of MPI processes to run with the current arg-set.

-env <ENVVAR> <value>

Use this option to set the <ENVVAR> environment variable to specified <value> for all MPI

processes in the current arg-set.

-envuser

Use this option to propagate all user environment variables, with the exception of the following

variables: $HOSTNAME, $HOST, $HOSTTYPE, $MACHTYPE, $OSTYPE. This is the default setting.

-envall

Use this option to propagate all environment variables in the current environment.

-envnone

Use this option to suppress propagation of any environment variables to the MPI processes in the

current arg-set.

-envlist <list of env var names>

Use this option to pass a list of environment variables with their current values. <list of env

var names> is a comma separated list of environment variables to be sent to the processes. If

this option is used several times in the command line, all variables listed in the arguments are

included into one list.

-envexcl <list of env var names>

Use this option to suppress propagation of the listed environment variables to the MPI processes in

the current arg-set.

73

-host <nodename>

Use this option to specify a particular <nodename> on which to run MPI processes in the current

argument set. For example, the following command runs the executable a.out on host host1 only:

$ mpiexec -n 2 -host host1 ./a.out

-path <directory>

Use this option to specify the path to the <executable> to run.

-wdir <directory>

Use this option to specify the working directory in which <executable> is to be run in the current

arg-set.

-umask <umask>

Use this option to perform the umask <umask> command for the remote process.

2.5.1.4. Configuration Files

The mpiexec configuration files specify the default options applied to all mpiexec commands.

If any of these files exist, their contents are prefixed to the command-line options for mpiexec in

the following order:

System-wide <installdir>/etc/mpiexec.conf. The default location of the configuration file is

the <installdir>/<arch>/etc.

 User-specific $HOME/.mpiexec.conf

Session-specific $PWD/mpiexec.conf

You can override these files by defining environment variables and using command line options.

You can skip these configuration files by using the mpiexec -noconf option.

You can create or modify these files. They contain mpiexec command-line options. Blank lines and

lines that start with # are ignored. For example, to specify a default fabric, add the following line

to the respective mpiexec.conf file:

-genv I_MPI_FABRICS <fabric>

2.5.1.5. Environment Variables

I_MPI_DEBUG

Print out debugging information when an MPI program starts running.

Syntax

I_MPI_DEBUG=<level>[,<flags>]

Intel® MPI Library Reference Manual for Linux* OS

74

Arguments

<level> Indicate level of debug information provided

0 Output no debugging information. This is the default value

1 Output verbose error diagnostics

2 Confirm which I_MPI_FABRICS was used

3 Output effective MPI rank, pid and node mapping table

4 Output process pinning information

5 Output Intel MPI-specific environment variables

> 5 Add extra levels of debug information

<flags> Comma-separated list of debug flags

pid Show process id for each debug message

tid
Show thread id for each debug message for multithreaded

library

time Show time for each debug message

datetime Show time and date for each debug message

host Show host name for each debug message

level Show level for each debug message

scope Show scope for each debug message

line Show source line number for each debug message

file Show source file name for each debug message

nofunc Do not show routine name

norank Do not show rank

flock Synchronize debug output from different process or threads

nobuf Do not use buffered I/O for debug output

Description

Set this environment variable to control the output of the debugging information.

75

You can specify the output file name for debug information by setting the

I_MPI_DEBUG_OUTPUT environment variable.

Each printed line has the following format:

[<identifier>] <message>

where

 <identifier> identifies the MPI process that produced the message. The <identifier> is

an MPI process rank if <level> is an unsigned number. If the '+' sign is added in front of the

<level> number, the <identifier> contains a rank#pid@hostname tuple. Here, rank is the

MPI process rank; pid is the UNIX process id; and hostname is the host name as defined at

process launch time.

 <message> contains the debugging output.

For example, the following command:

$ mpiexec -n 1 -env I_MPI_DEBUG 2 ./a.out

may produce the following output:

[0] MPI startup(): shared memory data transfer mode

while the command

$ mpiexec -n 1 -env I_MPI_DEBUG +2 ./a.out

or

$ mpiexec -n 1 -env I_MPI_DEBUG 2,pid,host ./a.out

may produce the following output:

[0#1986@mpicluster001] MPI startup(): shared memory data transfer mode

NOTE:

Compiling with mpiicc -g adds a considerable amount of printed debug information.

I_MPI_DEBUG_OUTPUT

Set output file name for debug information.

Syntax

I_MPI_DEBUG_OUTPUT =<arg>

Arguments

<arg> String value

stdout Output to stdout - default value

stderr Output to stderr

Intel® MPI Library Reference Manual for Linux* OS

76

<file_name> Specify the output file name for debug information

Description

Set this environment variable if you want to split output of debug information from the output

produced by an application. If you use format like %r, %p or %h, rank, pid or host name is added to

the file name accordingly.

I_MPI_PERHOST

Define the default settings for the -perhost option in the mpiexec command.

Syntax

I_MPI_PERHOST=<value>

Arguments

<value> Define the default process layout

<n> > 0 <n> processes per node

all All logical CPUs on a node

allcores All cores (physical CPUs) on a node

Description

Set this environment variable to define the default setting for the -perhost option. If -perhost is

explicitly called in the command line, the I_MPI_PERHOST environment variable has no effect. The

-perhost option assumes the value of the I_MPI_PERHOST environment variable if this

environment variable is defined.

NOTE:

 When I_MPI_PERHOST is defined together with mpiexec -host option, I_MPI_PERHOST is

ignored.

I_MPI_PRINT_VERSION

Print library version information.

Syntax

I_MPI_PRINT_VERSION=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Print library version information.

disable | no | off | 0 No action. This is the default value.

77

Description

Set this environment variable to enable/disable printing of Intel® MPI library version information

when an MPI application starts running.

(SDK only) I_MPI_JOB_TRACE_LIBS

(MPIEXEC_TRACE_LIBS)

Choose the libraries to preload through the -trace option.

Syntax

I_MPI_JOB_TRACE_LIBS=<arg>

Deprecated Syntax

MPIEXEC_TRACE_LIBS=<arg>

Arguments

<arg> String parameter

<list> Blank separated list of libraries to preload. The default value

is vt

Description

Set this environment variable to choose an alternative library for preloading by the -trace

option.

 (SDK only) I_MPI_JOB_CHECK_LIBS

Choose the libraries to preload through the -check_mpi option.

Syntax

I_MPI_JOB_CHECK_LIBS=<arg>

Arguments

<arg> String parameter

<list> Blank separated list of libraries to preload. The default value

is vtmc

Description

Set this environment variable to choose an alternative library for preloading by the -check_mpi

option.

I_MPI_JOB_STARTUP_TIMEOUT

Set the mpiexec job startup timeout.

Intel® MPI Library Reference Manual for Linux* OS

78

Syntax

I_MPI_JOB_STARTUP_TIMEOUT=<timeout>

Arguments

<timeout> Define mpiexec job startup timeout period in seconds

<n> >= 0 The default timeout value is 20 seconds

Description

Set this environment variable to make mpiexec wait for the job to start in <timeout> seconds

after its launch. The <timeout> value should be greater than zero. Otherwise the environment

variable setting is ignored and a warning message is printed. Setting this environment variable
may make sense on large clusters with a lot of nodes where the job startup time may exceed the
default value.

NOTE:

Set the I_MPI_JOB_STARTUP_TIMEOUT environment variable in the shell environment before

executing the mpiexec command. Do not use the -genv or -env options for setting the

<timeout> value. Those options are used only for passing environment variables to the MPI

process environment.

I_MPI_JOB_TIMEOUT

(MPIEXEC_TIMEOUT)

Set the mpiexec timeout.

Syntax

I_MPI_JOB_TIMEOUT=<timeout>

Deprecated Syntax

MPIEXEC_TIMEOUT=<timeout>

Arguments

<timeout> Define mpiexec timeout period in seconds

<n> >= 0 The default timeout value is zero, meaning no timeout

Description

Set this environment variable to make mpiexec terminate the job in <timeout> seconds after its

launch. The <timeout> value should be greater than zero. Otherwise the environment variable

setting is ignored.

79

NOTE:

Set theI_MPI_JOB_TIMEOUT environment variable in the shell environment before executing

the mpiexec command. Do not use the -genv or -env options for setting the <timeout> value.

Those options are used only for passing environment variables to the MPI process environment.

I_MPI_JOB_TIMEOUT_SIGNAL

(MPIEXEC_TIMEOUT_SIGNAL)

Define a signal to be used when a job is terminated because of a timeout.

Syntax

I_MPI_JOB_TIMEOUT_SIGNAL=<number>

Deprecated Syntax

MPIEXEC_TIMEOUT_SIGNAL=<number>

Arguments

<number> Define signal number

<n> > 0 The default value is 9 (SIGKILL)

Description

Define a signal number for task termination upon the timeout period specified by the environment

variable I_MPI_JOB_TIMEOUT. If you set a signal number unsupported by the system,,

mpiexec prints a warning message and continues task termination using the default signal number

9 (SIGKILL).

I_MPI_JOB_ABORT_SIGNAL

Define a signal to be sent to all processes when a job is terminated unexpectedly.

Syntax

I_MPI_JOB_ABORT_SIGNAL=<number>

Arguments

<number> Define signal number

<n> > 0 The default value is 9 (SIGKILL)

Description

Set this environment variable to define a signal for task termination. If you set an unsupported

signal number, mpiexec prints a warning message and uses the default signal 9 (SIGKILL).

I_MPI_JOB_SIGNAL_PROPAGATION

Intel® MPI Library Reference Manual for Linux* OS

80

(MPIEXEC_SIGNAL_PROPAGATION)

Control signal propagation.

Syntax

I_MPI_JOB_SIGNAL_PROPAGATION=<arg>

Deprecated Syntax

MPIEXEC_SIGNAL_PROPAGATION=<arg>

Arguments

<arg> Binary indicator

enable |yes | on| 1 Turn on propagation.

disable | no | off | 0 Turn off propagation. This is the default value

Description

Set this environment variable to control propagation of the signals (SIGINT, SIGALRM, and

SIGTERM) that may be received by the MPD daemons. If signal propagation is enabled, the

received signal is sent to all processes of the MPI job. If signal propagation is disabled, all

processes of the MPI job are stopped with the default signal 9 (SIGKILL).

I_MPI_OUTPUT_CHUNK_SIZE

Set the size of the stdout/stderr output buffer.

Syntax

I_MPI_OUTPUT_CHUNK_SIZE=<size>

Arguments

<size> Define output chunk size in kilobytes

<n> > 0 The default chunk size value is 1 KB

Description

Set this environment variable to increase the size of the buffer used to intercept the standard

output and standard error streams from the processes. If the <size> value is not greater than

zero, the environment variable setting is ignored and a warning message is displayed.

Use this setting for applications that create a significant amount of output from different processes.

With the -ordered-output mpiexec option, this setting helps to prevent the output from garbling.

NOTE:

Set the I_MPI_OUTPUT_CHUNK_SIZE environment variable in the shell environment before

executing the mpiexec command. Do not use the -genv or -env options for setting the <size>

81

value. Those options are used only for passing environment variables to the MPI process

environment.

I_MPI_PMI_EXTENSIONS

Turn on/off the use of the Intel® MPI Library Process Management Interface (PMI) extensions.

Syntax

I_MPI_PMI_EXTENSIONS=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Turn on the PMI extensions

disable | no | off | 0 Turn off the PMI extensions

Description

The Intel® MPI Library automatically detects if your process manager supports the PMI extensions.

If supported, the extensions substantially decrease task startup time. Set I_MPI_PMI_EXTENSIONS

to disable if your process manager does not support these extensions.

I_MPI_JOB_FAST_STARTUP

(I_MPI_PMI_FAST_STARTUP)

Turn on/off the faster Intel® MPI Library process startup algorithm.

Syntax

I_MPI_JOB_FAST_STARTUP=<arg>

Deprecated Syntax

I_MPI_PMI_FAST_STARTUP=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1
Turn on the algorithm for fast startup. This is the default

value

disable | no | off | 0 Turn off the algorithm for fast startup

Description

The new algorithm significantly decreases the application startup time. Some DAPL providers may

be overloaded during startup of large number of processes (greater than 512). To avoid this

problem, turn off this algorithm by setting the I_MPI_JOB_FAST_STARTUP environment variable to

disable.

Intel® MPI Library Reference Manual for Linux* OS

82

TOTALVIEW*

Select a particular TotalView* executable file to use.

Syntax

TOTALVIEW=<path>

Arguments

<path>

Path/name of the TotalView* executable file instead of the

default totalview

Description

Set this environment variable to select a particular TotalView* executable file.

I_MPI_PLATFORM

Select the intended optimization platform.

Syntax

I_MPI_PLATFORM=<platform>

Arguments

<platform> Intended optimization platform (string value)

auto[:min]
Optimize for the oldest supported Intel® Architecture Processor

across all nodes. This is the default value

auto:max
Optimize for the newest supported Intel® Architecture
Processor across all nodes

auto:most
Optimize for the most numerous Intel® Architecture Processor

across all nodes. In case of a tie, choose the newer platform

uniform
Optimize locally. The behavior is unpredictable if the resulting

selection differs from node to node

none Select no specific optimization

htn | generic

Optimize for the Intel® Xeon® Processors 5400 series and

other Intel® Architecture processors formerly code named
Harpertown

nhm

Optimize for the Intel® Xeon® Processors 5500, 6500, 7500

series and other Intel® Architecture processors formerly code
named Nehalem

wsm

Optimize for the Intel® Xeon® Processors 5600, 3600 series

and other Intel® Architecture processors formerly code named

Westmere

83

snb

Optimize for the Intel® Xeon® Processors E3-1200 series and

other Intel® Architecture processors formerly code named
Sandy Bridge

ivb

Optimize for the Intel® Xeon® Processors E3-1225V2, E3-

1275V2 series and other Intel® Architecture
processors formerly code named Ivy Bridge

knc

Optimize for the Intel® Xeon® Processors (codename: Knights

Corner). If Intel Xeon Phi coprocessor is present on the cluster,

the value is chosen by default.

Description

Set this variable to use the predefined platform settings. It is available for both Intel® and non-

Intel microprocessors, but it may utilize additional optimizations for Intel microprocessors than it
utilizes for non-Intel microprocessors.

NOTE:

The values auto:min, auto:max and auto:most may increase the MPI job startup time.

I_MPI_PLATFORM_CHECK

Turn on/off the optimization setting similarity check.

Syntax

I_MPI_PLATFORM_CHECK=<arg>

Argument

<arg> Binary indicator

enable | yes | on | 1
Turns on the optimization platform similarity check. This is

the default value

disable | no | off | 0 Turns off the optimization platform similarity check

Description

Set this variable to check the optimization platform settings of all processes for similarity. If the

settings are not the same on all ranks, the library terminates the program. Disabling this check

may reduce the MPI job startup time.

2.5.2. Configuration Files

$HOME/.mpd.conf

This optional configuration file contains an mpd daemon password. Create it before setting up the

mpd daemons. Use it to control access to the daemons by various Intel® MPI Library users.

Intel® MPI Library Reference Manual for Linux* OS

84

Syntax

The file has a single line:

secretword=<mpd password>

or

MPD_SECRETWORD=<mpd password>

Description

An arbitrary <mpd password> string only controls access to the mpd daemons by various cluster

users. Do not use Linux* OS login passwords here.

Place the $HOME/.mpd.conf file on a network-mounted file system, or replicate this file so that it

is accessible as $HOME/.mpd.conf on all nodes of the cluster.

When mpdboot is executed by some non-root <user>, this file should have user and ownership set

to <user> and <<user>'s group> accordingly. The access permissions should be set to 600

mode (only user has read and write privileges).

NOTE:

MPD_SECRETWORD is a synonym for secretword.

mpd.hosts

This file has a list of node names which the mpdboot command uses to start mpd daemons.

Ensure that this file is accessible by the user who runs mpdboot on the node where the mpdboot

command is actually invoked.

Syntax

The format of the mpd.hosts file is a list of node names, one name per line. Blank lines and the

portions of any lines that follow a # character are ignored.

2.5.3. Environment Variables

I_MPI_JOB_CONFIG_FILE

(I_MPI_MPD_CONF)

Set the path/name of the mpd configuration file.

Syntax

I_MPI_JOB_CONFIG_FILE=<path/name>

Deprecated Syntax

I_MPI_MPD_CONF=<path/name>

85

Arguments

<path/name> Absolute path of the MPD configuration file

Description

Set this environment variable to define the absolute path of the file that is used by the

mpdboot script instead of the default value ${HOME}/.mpd.conf.

I_MPI_JOB_CONTEXT

(MPD_CON_EXT)

Set a unique name for the mpd console file. This enables you to run several mpd rings under the

same user account.

Syntax

I_MPI_JOB_CONTEXT=<tag>

Deprecated Syntax

MPD_CON_EXT=<tag>

Arguments

<tag> Unique MPD identifier

Description

Set this environment variable to different unique values to allow several MPD rings to co-exist.

Each MPD ring is associated with a separate I_MPI_JOB_CONTEXT value. Once this environment

variable is set, you can start one MPD ring and work with it without affecting other available MPD

rings. Set the appropriate I_MPI_JOB_CONTEXT value to work with a particular MPD ring. See

Simplified Job Startup Command to learn about an easier way to run several Intel® MPI Library
jobs at once.

I_MPI_JOB_TAGGED_PORT_OUTPUT

Turn on/off the use of the tagged mpd port output.

Syntax

I_MPI_JOB_TAGGED_PORT_OUTPUT=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Turn on the tagged output. This is the default value

disable | no | off | 0 Turn off the tagged output

Description

The tagged output format works at the mpdboot stage and prevents a failure during startup due to

unexpected output from a remote shell like ssh. mpdboot sets this environment variable to 1

Intel® MPI Library Reference Manual for Linux* OS

86

automatically. Set I_MPI_JOB_TAGGED_PORT_OUTPUT to disable if you do not want to use the

new format.

I_MPI_MPD_CHECK_PYTHON

Toggle the Python* versions check at the MPD ring startup stage.

Syntax

I_MPI_MPD_CHECK_PYTHON=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Check for Python version compatibility

disable | no | off | 0 Do not check the Python version compatibility. This is the default

value

Description

Set this environment variable to enable compatibility checking of Python versions installed on the

cluster nodes. This may lead to increased MPD ring startup time. The MPD behavior is undefined if
incompatible Python versions are installed on the cluster.

If I_MPI_MPD_CHECK_PYTHON is set to enable and the compatibility check fails, mpdboot exits

abnormally and print a diagnostic message. An MPD ring is not started.

I_MPI_MPD_RSH

Set the remote shell to start mpd daemons.

Syntax

I_MPI_MPD_RSH =<arg>

Arguments

<arg> String parameter

<remote shell> The remote shell

Description

Set this environment variable to define the default setting for the --rsh mpdboot option. If --rsh

is explicitly called in the command line, the I_MPI_MPD_RSH environment variable has no effect. If

the --rsh option is not explicitly defined, it assumes the value of the I_MPI_MPD_RSH

environment variable.

I_MPI_MPD_TMPDIR

TMPDIR

Set a temporary directory for the MPD subsystem.

87

Syntax

I_MPI_MPD_TMPDIR=<arg>

TMPDIR=<arg>

Arguments

<arg> String parameter

<directory name> A string that points to a scratch space location. The default value

is /tmp

Description

Set one of these environment variables to specify an alternative scratch space location. The MPD

subsystem creates its own files in the directory specified by these environment variables. If both

environment variables point to valid directories, the value of the TMPDIR environment variable is

ignored.

NOTE:

The mpd2.console_* file path length is limited in some operating systems. If you get the

following diagnostic message: socket.error: AF_UNIX path too long. you need to

decrease the length of the <directory name> string to avoid this issue.

NOTE:

If <arg> points to a distributed file system (PANFS, PVFS, etc.), the mpd demons may not start.

If this happens, set the I_MPI_MPD_TMPDIR and TMPDIR to point to a standard file system,

such as ext2, ext3, or NFS.

I_MPI_MPD_CLEAN_LOG

Control the removal of the log file upon MPD termination.

Syntax

I_MPI_MPD_CLEAN_LOG=<value>

Arguments

<value> Define the value

enable | yes | on | 1 Remove the log file

disable | no | off | 0 Keep the log file. This is the default value

Description

Set this environment variable to define the mpdallexit behavior. If you enable this environment

variable, the mpdallexit removes the log file created during its execution. If you disable this

environment variable, the mpdallexit keeps the log file.

Intel® MPI Library Reference Manual for Linux* OS

88

2.6. Processor Information Utility

cpuinfo

The cpuinfo utility provides processor architecture information.

Syntax

cpuinfo [[-]<options>]]

Arguments

<options> Sequence of one-letter options. Each option controls a specific part of the output

data

g General information about single cluster node shows:

 the processor product name

 the number of packages/sockets on the node

 core and threads numbers on the node and within each package

 SMT mode enabling

i Logical processors identification table identifies threads, cores, and packages of

each logical processor accordingly.

 Processor - logical processor number.

 Thread Id - unique processor identifier within a core.

 Core Id - unique core identifier within a package.

 Package Id - unique package identifier within a node.

d Node decomposition table shows the node contents. Each entry contains the

information on packages, cores, and logical processors.

 Package Id - physical package identifier.

 Cores Id - list of core identifiers that belong to this package.

 Processors Id - list of processors that belong to this package. This list order

directly corresponds to the core list. A group of processors enclosed in

brackets belongs to one core.

c Cache sharing by logical processors shows information of sizes and processors

groups, which share particular cache level.

 Size - cache size in bytes.

 Processors - a list of processor groups enclosed in the parentheses those

share this cache or no sharing otherwise.

s Microprocessor signature hexadecimal fields (Intel platform notation) show

89

signature values:

 extended family

 extended model

 family

 model

 type

 stepping

f Microprocessor feature flags indicate what features the microprocessor supports.

The Intel platform notation is used.

A Equivalent to gidcsf

gidc Default sequence

? Utility usage info

Description

The cpuinfo utility prints out the processor architecture information that can be used to define

suitable process pinning settings. The output consists of a number of tables. Each table

corresponds to one of the single options listed in the arguments table.

NOTE:

The architecture information is available on systems based on the IA-32 and Intel® 64

architectures.

The cpuinfo utility is available for both Intel microprocessors and non-Intel microprocessors, but

it may provide only partial information about non-Intel microprocessors.

Examples

cpuinfo output for the processor of Intel® microarchitecture code name Sandy Bridge:

$ cpuinfo A

Intel(R) processor family information utility, Version 4.1.0 Build 20120713

Copyright (C) 2005-2012 Intel Corporation. All rights reserved.

===== Processor composition =====

Processor name : Genuine Intel(R)

Packages(sockets) : 2

Cores : 16

Processors(CPUs) : 32

Cores per package : 8

Threads per core : 2

===== Processor identification =====

Processor Thread Id. Core Id. Package Id.

Intel® MPI Library Reference Manual for Linux* OS

90

0 0 0 0

1 0 1 0

2 0 2 0

3 0 3 0

4 0 4 0

5 0 5 0

6 0 6 0

7 0 7 0

8 0 0 1

9 0 1 1

10 0 2 1

11 0 3 1

12 0 4 1

13 0 5 1

14 0 6 1

15 0 7 1

16 1 0 0

17 1 1 0

18 1 2 0

19 1 3 0

20 1 4 0

21 1 5 0

22 1 6 0

23 1 7 0

24 1 0 1

25 1 1 1

26 1 2 1

27 1 3 1

28 1 4 1

29 1 5 1

30 1 6 1

31 1 7 1

===== Placement on packages =====

Package Id. Core Id. Processors
0 0,1,2,3,4,5,6,7 (0,16)(1,17)(2,18)(3,19)(4,20)(5,21)(6,22)(7,23)

1 0,1,2,3,4,5,6,7 (8,24)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,31)

===== Cache sharing =====

Cache Size Processors
L1 32 KB (0,16)(1,17)(2,18)(3,19)(4,20)(5,21)(6,22)(7,23)(8,24)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,31)

L2 256 KB (0,16)(1,17)(2,18)(3,19)(4,20)(5,21)(6,22)(7,23)(8,24)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,31)

L3 20 MB (0,1,2,3,4,5,6,7,16,17,18,19,20,21,22,23)(8,9,10,11,12,13,14,15,24,25,26,27,28,29,30,31)

===== Processor Signature =====
 _________ ________ ______ ________ _______ __________

| xFamily | xModel | Type | Family | Model | Stepping |

|_________|________|______|________|_______|__________|

| 00 | 2 | 0 | 6 | d | 5 |

|_________|________|______|________|_______|__________|

===== Processor Feature Flags =====
 ______ __________ ________ _________ ________ _____ _____ ______ _____ _______ _________ _____ ______ ______

| SSE3 | PCLMULDQ | DTES64 | MONITOR | DS-CPL | VMX | SMX | EIST | TM2 | SSSE3 | CNXT-ID | FMA | CX16 | xTPR |

|______|__________|________|_________|________|_____|_____|______|_____|_______|_________|_____ ______|______|

| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 |

|______|__________|________|_________|________|_____|_____|______|_____|_______|_________|_____|______|______|

 ______ ______ _____ ________ ________ ________ _______ ________ ______________ _____ _______ _________ _____ ______ ________

| PDCM | PCID | DCA | SSE4.1 | SSE4.2 | x2APIC | MOVBE | POPCNT | TSC-DEADLINE | AES | XSAVE | OSXSAVE | AVX | F16C | RDRAND |

|______|______|_____|________|________|________|_______|________|______________|_____|_______|_________|_____|______|________|

| 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |

|______|______|_____|________|________|________|_______|________|______________|_____|_______|_________|_____|______|________|

 _____ _____ ____ _____ _____ _____ _____ _____ _____ ______ _____ ______ _____ _____ ______ _____ ________

| FPU | VME | DE | PSE | TSC | MSR | PAE | MCE | CX8 | APIC | SEP | MTRR | PGE | MCA | CMOV | PAT | PSE-36 |

|_____|_____|____|_____|_____|_____|_____|_____|_____|______|_____|______|_____|_____|______|_____|________|

| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

|_____|_____|____|_____|_____|_____|_____|_____|_____|______|_____|______|_____|_____|______|_____|________|

 _____ _______ ____ ______ _____ ______ _____ ______ ____ _____ ____ _____

| PSN | CLFSH | DS | ACPI | MMX | FXSR | SSE | SSE2 | SS | HTT | TM | PBE |

|_____|_______|____|______|_____|______|_____|______|____|_____|____|_____|

| 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

|_____|_______|____|______|_____|______|_____|______|____|_____|____|_____|

 _________ ______ ______ ______ ______ ______ _________

| FSGBASE | BMI1 | AVX2 | SMEP | BMI2 | ERMS | INVPCID |

0 0 0 0 0 0 0

91

3. Tuning Reference
The Intel® MPI Library provides an automatic tuning utility to help you select optimal values for

many environment variables that can be used to influence program behavior and performance at
run time.

3.1. Using mpitune Utility

mpitune

Use the mpitune utility to find optimal settings for the Intel® MPI Library relevant to your cluster

configuration or your application.

Syntax

mpitune [-a \"<application command line>\"] [-of <file-name>] \

 [-t \"<test_cmd_line>\"] [-cm] [-d] [-D] \

 [-dl [d1[,d2...[,dN]]]] [-fl [f1[,f2…[,fN]]]] [-er] \

 [-hf <hostsfile>] [-h] [-hr {min:max|min:|:max}] \

 [-i <count>] [-mr {min:max|min:|:max}] [-od <outputdir>] \

 [-odr <outputdir>] [-r <rshcmd>] [-pr {min:max|min:|:max}] \

 [-sf [file-path]] [-ss] [-s] [-td <dir-path>] \

 [-tl <minutes>] [-mh] [-os <opt1,...,optN>] \

 [-oe <opt1,...,optN>] [-V] [-vi {percent} ; -vix {X factor}]\

 [- zb] [-t] [-so] [-ar \"reg-expr\"] [-trf <appoutfile>]\

 [-m {base|optimized}] [-avd {min|max}] [-pm {mpd|hydra}] \

 [-co] [-sd] [-soc]

or

mpitune [--application \"<app_cmd _ line>\"] [--output-file <file-name>]\

 [--test \"<test_cmd_line>\"] [--cluster-mode] [--debug] \

 [--distinct] [--device-list [d1[,d2,… [,dN]]]] \

 [--fabric-list [f1[,f2...[,fN]]]] [--existing-ring] \

 [--host-file <hostsfile>] [--help] \

 [--host-range {min:max|min:|:max}] [--iterations <count>] \

 [--message-range {min:max|min:|:max}] \

 [--output-directory <outputdir>] \

 [--output-directory-results <outputdir>] [--rsh <rshcmd>] \

Intel® MPI Library Reference Manual for Linux* OS

92

 [--ppn-range {min:max|min:|:max} ;

 --perhost-range {min:max|min:|:max}] \

 [--session-file [file-path]] [--show-session] [--silent] \

 [--temp-directory <dir-path>] [--time-limit <minutes>] \

 [--master-host] [--options-set <opt1,...,optN>] \

 [--options-exclude <opt1,...,optN>] [--version] \

 [--valuable-improvement ; --valuable-improvement-x {X factor}]\

 [--zero-based] [--trace] [--scheduler-only] \

 [--application-regexp \"reg-expr\"] \

 [--test-regexp-file <appoutfile>] [--model {base|optimized}] \

 [--application-value-direction {min|max}] \

 [--process-manager {mpd|hydra}] [-co] [-sd] [-soc]

Arguments

-a \"<app_ cmd_line>\"|

--application
\"<app_cmd_line>\"

Switch on the application-specific mode. Quote the full

command line as shown, including the backslashes.

-of <file-name> |

--output-file <file-name>

Specify the name of the application configuration file to be

generated in the application-specific mode. By default,

use the file name $PWD/app.conf.

-t \"<test_cmd_line>\" |

--test \"<test_cmd_line>\"

Replace the default Intel® MPI Benchmarks by the

indicated benchmarking program in the cluster-specific
mode. Quote the full command line as shown including
the backslashes.

-cm {exclusive|full} | --

cluster-mode

{exclusive|full}

Set the cluster usage mode

 full - maximum number of tasks are executed. This

is the default mode.

 exclusive - only one task is executed on the cluster

at a time.

-d | --debug Print out the debug information.

-D | --distinct Tune all options separately from each other. This

argument is applicable only for the cluster-specific mode.

-dl [d1[,d2...[,dN]]] |

--device-list [d1[,d2,…

[,dN]]]

Select the device(s) you want to tune. Any previously set

fabrics are ignored.. By default, use all devices listed in

the <installdir>/<arch>/etc/devices.xml file.

-fl [f1[,f2...[,fN]]] | Select the fabric(s) you want to tune. Any previously set

93

--fabric-list

[f1[,f2…[,fN]]]

devices are ignored. By default, use all fabrics listed in

the <installdir>/<arch>/etc/fabrics.xml file.

-er | --existing-ring Use an existing MPD ring. By default, a new MPD ring

is created. This argument is applicable only if

I_MPI_PROCESS_MANAGER is set to mpd.

-hf <hostsfile> |

--host-file <hostsfile>

Specify an alternative host file name. By default, use the
$PWD/mpd.hosts.

-h | --help Display the help message.

-hr {min:max|min:|:max} |

--host-range

{min:max|min:|:max}

Set the range of hosts used for testing. The default

minimum value is 1. The default maximum value is the

number of hosts defined by the mpd.hosts or the existing

MPD ring. The min: or :max format uses the default

values as appropriate.

-i <count> |

--iterations <count>

Define how many times to run each tuning step. Higher

iteration counts increase the tuning time, but may also
increase the accuracy of the results. The default value is

3.

-mr {min:max|min:|:max} |

--message-range

{min:max|min:|:max}

Set the message size range. The default minimum value

is 0. The default maximum value is 4194304 (4mb). By

default, the values are given in bytes. They can also be

given in the following format: 16kb, 8mb or 2gb. The

min: or :max format uses the default values as

appropriate.

-od <outputdir> |

--output-directory

<outputdir>

Specify the directory name for all output files: log-files,

session-files, local host-files and report-files. By default,
use the current directory. This directory should be

accessible from all hosts.

-odr <outputdir> |

--output-directory-results

<outputdir>

Specify the directory name for the resulting configuration

files. By default, use the current directory in the
application-specific mode and the

<installdir>/<arch>/etc in the cluster-specific mode.

If <installdir>/<arch>/etc is unavailable, $PWD is

used as the default value in the cluster-specific mode.

-r <rshcmd> | --rsh

<rshcmd>
Specify the remote shell used to start daemons (as

applicable) and jobs. The default value is ssh.

-pr {min:max|min:|:max} |

--ppn-

range {min:max|min:|:max} |

--perhost-range

{min:max|min:|:max}

Set the maximum number of processes per host. The

default minimum value is 1. The default maximum value

is the number of cores of the processor. The min: or :max

format uses the default values as appropriate.

Intel® MPI Library Reference Manual for Linux* OS

94

-sf [file-path] |

--session-file [file-path]

Continue the tuning process starting from the state saved

in the file-path session file.

-ss |

--show-session

Show information about the session file and exit. This

option works only jointly with the -sf option.

-s | --silent Suppress all diagnostics.

-td <dir-path> |

--temp-directory <dir-path>

Specify a directory name for the temporary data. Use

$PWD/mpitunertemp by default. This directory should be

accessible from all hosts.

-tl <minutes> |

--time-limit <minutes>

Set mpitune execution time limit in minutes. The default

value is 0, which means no limitations.

-mh |

--master-host

Dedicate a single host to run the mpitune.

-os <opt1,...,optN>|

--options-set

<opt1,...,optN>

Use mpitine to tune the only required options you have

set in the option values

-oe <opt1,...,optN>|

--options-exclude

<opt1,...,optN>

Exclude the settings of the indicated Intel® MPI Library

options from the tuning process.

-V | --version Print out the version information.

-vi {percent} |>

--valuable-improvement

{percent}

-vix {X factor} |

--valuable-improvement-

x {X factor}

Control the threshold for performance improvement. The

default threshold is 3%.

-zb | --zero-based Set zero as the base for all options before tuning. This

argument is applicable only for the cluster-specific mode.

-t | --trace Print out error information such as error codes and tuner

trace back.

-so | --scheduler-only Create the list of tasks to be executed, display the tasks,

and terminate execution.

95

-ar \"reg-expr\" |

--application-regexp \"reg-

expr\"

Use reg-expr to determine the performance expectations

of the application. This option is applicable only for the

application-specific mode. The reg-expr setting should

contain only one group of numeric values which is used by

mpitune for analysis. Use backslash for symbols when

setting the value of this argument in accordance with the
operating system requirements.

-trf <appoutfile> |

--test-regexp-file

<appoutfile>

Use a test output file to check the correctness of the

regular expression. This argument is applicable only for

the cluster-specific mode when you use the -ar option.

-m {base|optimized} |

--model {base|optimized}

Specify the search model:

 Set base to use the old model.

 Set optimized to use the new faster search model.

This is the default value.

-avd {min|max} |

--application-value-

direction {min|max}

Specify the direction of the value optimization :

 Set min to specify that lower is better. For example,

use this value when optimizing the wall time.

 Set max to specify that higher is better. For example,

use this value when optimizing the solver ratio.

-pm {mpd|hydra} |

--process-manager

{mpd|hydra}

Specify the process manager used to run the benchmarks.

The default value is hydra.

-co | --collectives-only Tune collective operations only.

-sd | --save-defaults Use mpitune to save the default values of the Intel® MPI

Library options.

-soc | --skip-options-check Specify whether to check the command line options.

Deprecated Options

Deprecated Option New Option

--outdir -od | --output-directory

--verbose -d | --debug

--file -hf | --host-file

--logs -lf | --log-file

--app -a | --application

Intel® MPI Library Reference Manual for Linux* OS

96

Description

Use the mpitune utility to create a set of Intel® MPI Library configuration files that contain

optimal settings for a particular cluster or application. You can reuse these configuration files in

the mpirun job launcher by using the -tune option. If configuration files from previous mpitune

sessions exist, mpitune creates a copy of the existing files before starting execution.

The MPI tuner utility operates in two modes:

 Cluster-specific, evaluating a given cluster environment using either the Intel® MPI

Benchmarks or a user-provided benchmarking program to find the most suitable configuration
of the Intel® MPI Library. This mode is used by default.

 Application-specific, evaluating the performance of a given MPI application to find the best
configuration for the Intel® MPI Library for the particular application. Application tuning is

enabled by the --application command line option.

3.1.1. Cluster Specific Tuning

To find the optimal settings for tuning your cluster, run the mpitune utility once after the Intel®

MPI Library installation and after every cluster configuration change (processor or memory
upgrade, network reconfiguration, etc.). To get the list of settings, run the utility under the user

account that was used for the Intel® MPI Library installation, or appropriately set the tuner data

directory through the --output-directory option and the results directory through the --

output-directory-results option.

If there are any configuration files in the <installdir>/<arch>/etc directory, the recorded

Intel® MPI Library configuration settings are used automatically by mpirun with the -tune option.

For example:

 Collect configuration settings for the cluster hosts listed in the ./mpd.hosts file by using the

Intel® MPI Benchmarks

$ mpitune

 Use the optimal recorded values when running on the cluster

$ mpirun -tune -n 32 ./myprog

The job launcher finds a proper set of configuration options based on the following execution

conditions: communication fabrics, number of hosts and processes, etc. If you have write access

permission for <installdir>/<arch>/etc, all generated files are saved in this directory;

otherwise the current working directory is used.

NOTE:

When you use the –tune option in the cluster specific mode (such as, without the tuning

configuration file name), you need to explicitly select the communication device or fabric, the

number of processes per node, and the total number of processes. For example:
$ mpirun –tune –genv I_MPI_FABRICS shm:dapl –ppn 8 -n 32 ./myprog

97

3.1.1.1. Replacing the Default Benchmark

This tuning feature is an extension of the cluster-specific tuning mode in which you specify a

benchmarking application that is used for tuning.

The Intel® MPI Benchmarks executable files, which are more optimized for Intel microprocessors

than for non-Intel microprocessors, are used by default. This may result in different tuning
settings on Intel microprocessors than on non-Intel microprocessors.

For example:

1. Collect the configuration settings for the cluster hosts listed in the ./mpd.hosts file by using

the desired benchmarking program

$ mpitune --test \"benchmark -param1 -param2\"

2. Use the optimal recorded values for your cluster

$ mpiexec -tune -n 32 ./myprog

3.1.2. Application Specific Tuning

Run the tuning process for any MPI application by specifying its command line to the tuner.

Performance is measured as inversed execution time of the given application. To reduce the
overall tuning time, use the shortest representative application workload that is applicable to the
configuration (fabric, rank placement, etc.).

NOTE:

In the application specific mode, you can achieve the best tuning results using a similar

command line and environment.

For example:

Collect configuration settings for the given application

$ mpitune --application \"mpirun -n 32 ./myprog\" -of ./myprog.conf

Use the optimal recorded values for your application

$ mpirun -tune ./myprog.conf -n 32 ./myprog

Based on the default tuning rules, the automated tuning utility evaluates a full set of the library

configuration parameters to minimize the application execution time. By default, all generated files
are saved in the current working directory.

The resulting application configuration file contains the optimal Intel® MPI Library parameters for

this application and configuration only. To tune the Intel® MPI Library for the same application in
a different configuration (number of hosts, workload, etc.), rerun the automated tuning utility with

the desired configuration.

Intel® MPI Library Reference Manual for Linux* OS

98

NOTE:

By default, the automated tuning utility overwrites the existing application configuration files. If

you want to keep various application and configuration files, you should use a naming

convention to save the different versions and select the correct file when you need it.

3.1.3. Tuning Utility Output

Upon completion of the tuning process, the Intel® MPI Library tuning utility records the chosen

values in the configuration file in the following format:

 -genv I_MPI_DYNAMIC_CONNECTION 1

 -genv I_MPI_ADJUST_REDUCE 1:0-8

The Intel MPI Library tuning utility ignores any environment variables that have no effect on the

application when the difference between probes is at the noise level (1%). In this case, the utility

does not set the environment variable and preserves the default library heuristics.

In the case of an tuning application that has significant run-to-run performance variation, the Intel

MPI Library tuning utility might select divergent values for the same environment variable under
the same conditions. To improve decision accuracy, increase the number of iterations for each test

run with the --iterations command line option. The default value for the number of iterations is

3.

3.2. Process Pinning

Use this feature to pin a particular MPI process to a corresponding CPU and avoid undesired

process migration. This feature is available on operating systems that provide the necessary kernel
interfaces.

3.2.1. Processor Identification

The following schemes are used to identify logical processors in a system:

 System-defined logical enumeration

 Topological enumeration based on three-level hierarchical identification through triplets

(package/socket, core, thread)

The number of a logical CPU is defined as the corresponding position of this CPU bit in the kernel

affinity bit-mask. Use the cpuinfo utility, provided with your Intel MPI Library installation, or the

cat /proc/cpuinfo command to find out the logical CPU numbers.

The three-level hierarchical identification uses triplets that provide information about processor

location and their order. The triplets are hierarchically ordered (package, core, and thread).

See the example below for one possible processor numbering scenario with two sockets, four cores

(two cores per socket), and eight logical processors (two processors per core).

NOTE:

Logical and topological enumerations are not the same.

99

 Table 3.2-1 Logical Enumeration

0 4 1 5 2 6 3 7

Table 3.2-2 Hierarchical Levels

Socket 0 0 0 0 1 1 1 1

Core 0 0 1 1 0 0 1 1

Thread 0 1 0 1 0 1 0 1

Table 3.2-3 Topological Enumeration

0 1 2 3 4 5 6 7

Use the cpuinfo utility to identify the correspondence between the logical and topological

enumerations. See Processor Information Utility for more details.

3.2.2. Environment Variables

I_MPI_PIN

Turn on/off process pinning.

Syntax

I_MPI_PIN=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Enable process pinning. This is the default value

disable | no | off | 0 Disable processes pinning

Description

Set this environment variable to turn off the process pinning feature of the Intel® MPI Library.

I_MPI_PIN_MODE

Choose the pinning method.

Syntax

I_MPI_PIN_MODE=<pinmode>

Arguments

<pinmode> Choose the CPU pinning mode

mpd|pm Pin processes inside the process manager involved

(Multipurpose Daemon*-MPD or Hydra*). This is the

Intel® MPI Library Reference Manual for Linux* OS

100

default value

lib Pin processes inside the Intel MPI Library

Description

Set the I_MPI_PIN_MODE environment variable to choose the pinning method. This environment

variable is valid only if the I_MPI_PIN environment variable is enabled.

Set the I_MPI_PIN_MODE environment variable to mpd|pm to make the mpd daemon or the Hydra

process launcher pin processes through system specific means, if they are available. The pinning is
done before the MPI process launch. Therefore, it is possible to co-locate the process CPU and
memory in this case. This pinning method has an advantage over a system with Non-Uniform
Memory Architecture (NUMA) like SGI* Altix*. Under NUMA, a processor can access its own local

memory faster than non-local memory.

Set the I_MPI_PIN_MODE environment variable to lib to make the Intel® MPI Library pin the

processes. This mode does not offer the capability to co-locate the CPU and memory for a process.

I_MPI_PIN_PROCESSOR_LIST

(I_MPI_PIN_PROCS)

Define a processor subset and the mapping rules for MPI processes within this subset.

Syntax

I_MPI_PIN_PROCESSOR_LIST=<value>

The environment variable value has the following syntax forms:

1. <proclist>

2.
[<procset>][:[grain=<grain>][,shift=<shift>]\[,preoffset=<preoffset>][,postoffs

et=<postoffset>]

3. [<procset>][:map=<map>]

Deprecated Syntax

I_MPI_PIN_PROCS=<proclist>

NOTE:

The postoffset keyword has offset alias.

NOTE:

The second form of the pinning procedure has three steps:

1. Cyclic shift of the source processor list on preoffset*grain value.

2. Round robin shift of the list derived on the first step on shift*grain value.

3. Cyclic shift of the list derived on the second step on the postoffset*grain value.

101

The resulting processor list is used for the consecutive mapping of MPI processes (i-th rank is
mapped to the i-th list member).

NOTE:

The grain, shift, preoffset, and postoffset parameters have a unified definition style.

This environment variable is available for both Intel® and non-Intel microprocessors, but it may
perform additional optimizations for Intel microprocessors than it performs for non-Intel

microprocessors.

Arguments

<proclist> A comma-separated list of logical processor numbers and/or ranges

of processors. The process with the i-th rank is pinned to the i-th
processor in the list. The number should not exceed the amount of

processors on a node.

<l> Processor with logical number <l>.

<l>-<m> Range of processors with logical numbers from <l> to <m>.

<k>,<l>-<m> Processors <k>, as well as <l> through <m>.

<procset> Specify a processor subset based on the topological numeration. The

default value is allcores.

all All logical processors. This subset is defined to be the number of CPUs

on a node.

allcores All cores (physical CPUs). This subset is defined to be the number of

cores on a node. This is the default value.

If Intel® Hyper-Threading Technology is disabled, allcores equals

to all.

allsocks All packages/sockets. This subset is defined to be the number of

sockets on a node.

<map> The mapping pattern used for process placement.

bunch The processes are mapped as close as possible on the sockets.

scatter The processes are mapped as remotely as possible so as not to share

common resources: FSB, caches, core.

spread The processes are mapped consecutively with the possibility not to

share common resources.

Intel® MPI Library Reference Manual for Linux* OS

102

<grain> Specify the pinning granularity cell for a defined <procset>. The

minimal <grain> is a single element of the <procset>. The maximal

grain is the number of <procset> elements in a socket. The <grain>

value must be a multiple of the <procset> value. Otherwise, minimal

grain is assumed. The default value is the minimal <grain>.

<shift> Specify the granularity of the round robin scheduling shift of the cells

for the <procset>. <shift> is measured in the defined <grain>

units. The <shift> value must be positive integer. Otherwise, no

shift is performed. The default value is no shift.

<preoffset> Specify the cyclic shift of the processor subset <procset> defined

before the round robin shifting on the <preoffset> value. The value

is measured in the defined <grain> units. The <preoffset> value

must be non-negative integer. Otherwise, no shift is performed. The
default value is no shift.

<postoffset> Specify the cyclic shift of the processor subset <procset> derived

after round robin shifting on the <postoffset> value. The value is

measured in the defined <grain> units. The <postoffset> value

must be non-negative integer. Otherwise no shift is performed. The
default value is no shift.

<n> Specify an explicit value of the corresponding parameters previously

mentioned. <n> is non-negative integer.

fine Specify the minimal value of the corresponding parameter.

core Specify the parameter value equal to the amount of the

corresponding parameter units contained in one core.

cache1 Specify the parameter value equal to the amount of the

corresponding parameter units that share an L1 cache.

cache2 Specify the parameter value equal to the amount of the

corresponding parameter units that share an L2 cache.

cache3 Specify the parameter value equal to the amount of the

corresponding parameter units that share an L3 cache.

cache The largest value among cache1, cache2, and cache3.

socket | sock Specify the parameter value equal to the amount of the

corresponding parameter units contained in one physical

package/socket.

half | mid Specify the parameter value equal to socket/2.

third Specify the parameter value equal to socket/3.

quarter Specify the parameter value equal to socket/4.

103

octavo Specify the parameter value equal to socket/8.

Description

Set the I_MPI_PIN_PROCESSOR_LIST environment variable to define the processor placement. To

avoid conflicts with differing shell versions, the environment variable value may need to be

enclosed in quotes.

NOTE:

This environment variable is valid only if I_MPI_PIN is enabled.

The I_MPI_PIN_PROCESSOR_LIST environment variable has the following different syntax variants:

 Explicit processor list. This comma-separated list is defined in terms of logical processor
numbers. The relative node rank of a process is an index to the processor list such that the i-

th process is pinned on i-th list member. This permits the definition of any process placement
on the CPUs.

For example, process mapping for I_MPI_PIN_PROCESSOR_LIST=p0,p1,p2,...,pn is as follows:

Rank on a node 0 1 2 ... n-1 N

Logical CPU p0 p1 p2 ... pn-1 Pn

 grain/shift/offset mapping. This method provides cyclic shift of a defined grain along the

processor list with steps equal to shift*grain and a single shift on offset*grain at the end.

This shifting action is repeated shift times.

For example: grain = 2 logical processors, shift = 3 grains, offset = 0.

Legend:

gray - MPI process grains

A) red - processor grains chosen on the 1st pass

B) cyan - processor grains chosen on the 2nd pass

C) green - processor grains chosen on the final 3rd pass

D) Final map table ordered by MPI ranks

 A)

 0
1

 2
3

 . . . 2n-2 2n-
1

 0
1

 2
3

 4 5 6
7

 8
9

 10
11

. . . 6n-6
6n-5

6n-4
6n-3

6n-2
6n-1

 B)

 0
1

 2n
2n+1

 2
3

2n+2
2n+3

 . . . 2n-2 2n-
1

4n-2
4n-1

 0 2 4 5 6 8 10 . . . 6n-6 6n-4 6n-2

Intel® MPI Library Reference Manual for Linux* OS

104

1 3 7 9 11 6n-5 6n-3 6n-1

 C)

 0
1

 2n
2n+1

 4n
4n+1

 2
3

2n+2
2n+3

4n+2
4n+3

. . . 2n-2 2n-
1

4n-2
4n-1

6n-2
6n-1

 0
1

 2
3

 4 5 6
7

 8
9

 10
11

. . . 6n-6
6n-5

6n-4
6n-3

6n-2
6n-1

 D)

 0 1 2
3

… 2n-2 2n-
1

2n
2n+1

2n+2
2n+3

… 4n-2 4n-
1

 4n
4n+1

4n+2
4n+3

… 6n-2
6n-1

 0 1 6
7

… 6n-6 6n-
5

 2
3

 8
9

… 6n-4 6n-
3

 4
5

 10
11

… 6n-2
6n-1

Predefined mapping scenario. In this case popular process pinning schemes are defined as

keywords selectable at runtime. There are two such scenarios: bunch and scatter.

In this case popular process pinning schemes are defined as keywords that are selectable at

runtime. There are two such scenarios: bunch and scatter.

In the bunch scenario the processes are mapped proportionally to sockets as closely as possible.

This makes sense for partial processor loading. In this case the number of processes is less than
the number of processors.

In the scatter scenario the processes are mapped as remotely as possible so as not to share

common resources: FSB, caches, cores.

In the example below there are two sockets, four cores per socket, one logical CPU per core, and

two cores per shared cache.

Legend:

gray - MPI processes

cyan - 1st socket processors

green - 2nd socket processors

Same color defines a processor pair sharing a cache

bunch scenario for 5 processes

scatter scenario for full loading

Examples

To pin the processes to CPU0 and CPU3 on each node globally, use the following command:

$ mpirun -genv I_MPI_PIN_PROCESSOR_LIST 0,3 \

-n <# of processes> <executable>

 0 1 2 3 4

 0 1 2 3 4 5 6 7

 0 4 2 6 1 5 3 7

 0 1 2 3 4 5 6 7

105

To pin the processes to different CPUs on each node individually (CPU0 and CPU3 on host1 and

CPU0, CPU1 and CPU3 on host2), use the following command:

$ mpirun -host host1 -env I_MPI_PIN_PROCESSOR_LIST 0,3 \

-n <# of processes> <executable> : \

-host host2 -env I_MPI_PIN_PROCESSOR_LIST 1,2,3 \

-n <# of processes> <executable>

To print extra debug information about process pinning, use the following command:

$ mpirun -genv I_MPI_DEBUG 4 -m -host host1 \

-env I_MPI_PIN_PROCESSOR_LIST 0,3 -n <# of processes> <executable> :\

-host host2 -env I_MPI_PIN_PROCESSOR_LIST 1,2,3 \ -n <# of processes>

<executable>

NOTE:

If the number of processes is greater than the number of CPUs used for pinning, the process list

is wrapped around to the start of the processor list.

I_MPI_PIN_PROCESSOR_EXCLUDE_LIST

Define a subset of logical processors.

Syntax

I_MPI_PIN_PROCESSOR_EXCLUDE_LIST=<proclist>

Arguments

<proclist> A comma-separated list of logical processor numbers and/or ranges

of processors.

<l> Processor with logical number <l>.

<l>-<m> Range of processors with logical numbers from <l> to <m>.

<k>,<l>-<m> Processors <k>, as well as <l> through <m>.

 Description

Set this environment variable to define the logical processors Intel® MPI Library do not use for

pining capability on the intended hosts. Logical processors are numbered as in /proc/cpuinfo.

I_MPI_PIN_CELL

Set this environment variable to define the pinning resolution granularity. I_MPI_PIN_CELL

specifies the minimal processor cell allocated when an MPI process is running.

Syntax

I_MPI_PIN_CELL=<cell>

Intel® MPI Library Reference Manual for Linux* OS

106

Arguments

<cell> Specify the resolution granularity

unit Basic processor unit (logical CPU)

core Physical processor core

Description

Set this environment variable to define the processor subset used when a process is running. You

can choose from two scenarios:

 all possible CPUs in a system (unit value)

 all cores in a system (core value)

The environment variable has effect on both pinning kinds:

 one-to-one pinning through the I_MPI_PIN_PROCESSOR_LIST environment variable

 one-to-many pinning through the I_MPI_PIN_DOMAIN environment variable

The default value rules are:

 If you use I_MPI_PIN_DOMAIN, then the cell granularity is unit.

 If you use I_MPI_PIN_PROCESSOR_LIST, then the following rules apply:

 When the number of processes is greater than the number of cores, the cell granularity is

unit.

 When the number of processes is equal to or less than the number of cores, the cell

granularity is core.

NOTE:

The core value is not affected by the enabling/disabling of Hyper-threading technology in a

system.

I_MPI_PIN_RESPECT_CPUSET

Respect the process affinity mask.

Syntax

I_MPI_PIN_RESPECT_CPUSET=<value>

Arguments

<value> Binary indicator

enable | yes | on | 1 Respect the process affinity mask. This is the default value

107

disable | no | off | 0 Do not respect the process affinity mask

Description

If I_MPI_PIN_RESPECT_CPUSET=enable, the Hydra process launcher uses its process affinity

mask on each intended host to determine logical processors for applying Intel MPI Library pinning
capability.

If I_MPI_PIN_RESPECT_CPUSET=disable, the Hydra process launcher does not use its process

affinity mask to determine logical processors for applying Intel MPI Library pinning capability.

I_MPI_PIN_RESPECT_HCA

In the presence of Infiniband architecture* host channel adapter (IBA* HCA), adjust the pinning

according to the location of IBA HCA.

Syntax

I_MPI_PIN_RESPECT_HCA=<value>

Arguments

<value> Binary indicator

enable | yes | on | 1
Use the location of IBA HCA (if available). This is the

default value

disable | no | off | 0 Do not use the location of IBA HCA

Description

If I_MPI_PIN_RESPECT_HCA=enable, the Hydra process launcher uses the location of IBA HCA on

each intended host for applying Intel MPI Library pinning capability.

If I_MPI_PIN_RESPECT_CPUSET=disable, the Hydra process launcher does not use the location

of IBA HCA on each intended host for applying Intel MPI Library pinning capability.

3.2.3. Interoperability with OpenMP* API

I_MPI_PIN_DOMAIN

The Intel® MPI Library provides an additional environment variable to control process pinning for

hybrid Intel MPI Library applications. This environment variable is used to define a number of non-
overlapping subsets (domains) of logical processors on a node, and a set of rules on how MPI
processes are bound to these domains by the following formula: one MPI process per one domain.
See the picture below.

Intel® MPI Library Reference Manual for Linux* OS

108

Picture 3.2-1 Domain Example

Each MPI process can create a number of children threads for running within the corresponding

domain. The process threads can freely migrate from one logical processor to another within the
particular domain.

If the I_MPI_PIN_DOMAIN environment variable is defined, then the

I_MPI_PIN_PROCESSOR_LIST environment variable setting is ignored.

If the I_MPI_PIN_DOMAIN environment variable is not defined, then MPI processes are pinned

according to the current value of the I_MPI_PIN_PROCESSOR_LIST environment variable.

The I_MPI_PIN_DOMAIN environment variable has the following syntax forms:

 Domain description through multi-core terms <mc-shape>

 Domain description through domain size and domain member layout

<size>[:<layout>]

 Explicit domain description through bit mask

The following tables describe these syntax forms.

Multi-core Shape

I_MPI_PIN_DOMAIN=<mc-shape>

<mc-shape> Define domains through multi-core terms.

109

core Each domain consists of the logical processors that share a

particular core. The number of domains on a node is equal to the
number of cores on the node.

socket | sock Each domain consists of the logical processors that share a

particular socket. The number of domains on a node is equal to the
number of sockets on the node. This is the recommended value.

node All logical processors on a node are arranged into a single domain.

cache1 Logical processors that share a particular level 1 cache are

arranged into a single domain.

cache2 Logical processors that share a particular level 2 cache are

arranged into a single domain.

cache3 Logical processors that share a particular level 3 cache are

arranged into a single domain.

cache The largest domain among cache1, cache2, and cache3 is

selected.

Explicit Shape

I_MPI_PIN_DOMAIN=<size>[:<layout>]

<size> Define a number of logical processors in each domain (domain

size)

omp The domain size is equal to the OMP_NUM_THREADS environment

variable value. If the OMP_NUM_THREADS environment variable is

not set, each node is treated as a separate domain.

auto The domain size is defined by the formula size=#cpu/#proc,

where #cpu is the number of logical processors on a node, and

#proc is the number of the MPI processes started on a node

<n> The domain size is defined by a positive decimal number <n>

<layout> Ordering of domain members. The default value is compact

platform Domain members are ordered according to their BIOS numbering

(platform-depended numbering)

compact Domain members are located as close to each other as possible in

terms of common resources (cores, caches, sockets, etc.). This is

the default value

scatter Domain members are located as far away from each other as

possible in terms of common resources (cores, caches, sockets,

Intel® MPI Library Reference Manual for Linux* OS

110

etc.)

 Explicit Domain Mask

I_MPI_PIN_DOMAIN=<masklist>

<masklist> Define domains through the comma separated list of hexadecimal

numbers (domain masks)

[m1,...,mn] Each mi number defines one separate domain. The following rule is

used: the ith logical processor is included into the domain if the

corresponding mi value is set to 1. All remaining processors are put

into a separate domain. BIOS numbering is used

NOTE:

These options are available for both Intel® and non-Intel microprocessors, but they may

perform additional optimizations for Intel microprocessors than they perform for non-Intel

microprocessors.

NOTE:

To pin OpenMP* processes/threads inside the domain, the corresponding OpenMP feature (for

example, the KMP_AFFINITY environment variable for Intel® Composer XE) should be used.

NOTE:

The following configurations are effectively the same as if pinning is not applied:

 If I_MPI_PIN_DOMAIN=auto and a single process is running on a node (for example, due to

I_MPI_PERHOST=1)

 I_MPI_PIN_DOMAIN=node

If you do not want the process to be migrated between sockets on a multi-socket platform,

specify the domain size as I_MPI_PIN_DOMAIN=socket or smaller.

You can also use I_MPI_PIN_PROCESSOR_LIST, which produces a single-cpu process affinity

mask for each rank (the affinity mask is supposed to be automatically adjusted in presence of

IBA* HCA).

See the following model of an SMP node in the examples below:

111

Picture 3.2-2 Model of a Node

Intel® MPI Library Reference Manual for Linux* OS

112

Picture 3.2-3 mpiexec -n 2 -env I_MPI_PIN_DOMAIN socket ./a.out

Two domains are defined according to the number of sockets. Process rank 0 can migrate on all

cores on the 0-th socket. Process rank 1 can migrate on all cores on the first socket.

113

Picture 3.2-4 mpiexec -n 4 -env I_MPI_PIN_DOMAIN cache2 ./a.out

Four domains are defined according to the amount of common L2 caches. Process rank 0 runs on

cores {0,4} that share an L2 cache. Process rank 1 runs on cores {1,5} that share an L2 cache as

Intel® MPI Library Reference Manual for Linux* OS

114

well, and so on.

Picture3.2-5 mpiexec -n 2 -env I_MPI_PIN_DOMAIN 4:platform ./a.out

Two domains with size=4 are defined. The first domain contains cores {0,1,2,3}, and the second
domain contains cores {4,5,6,7}. Domain members (cores) have consecutive numbering as

115

defined by the platform option.

Picture3.2-6 mpiexec -n 4 -env I_MPI_PIN_DOMAIN auto:scatter ./a.out

Domain size=2 (defined by the number of CPUs=8 / number of processes=4), scatter layout.

Four domains {0,2}, {1,3}, {4,6}, {5,7} are defined. Domain members do not share any common

Intel® MPI Library Reference Manual for Linux* OS

116

resources.

Picture3.2-7 mpiexec -n 4 -env I_MPI_PIN_DOMAIN omp:platform ./a.out

setenv OMP_NUM_THREADS=2

Domain size=2 (defined by OMP_NUM_THREADS=2), platform layout. Four domains {0,1}, {2,3},

{4,5}, {6,7} are defined. Domain members (cores) have consecutive numbering.

117

Picture3.2-8 mpiexec -n 2 -env I_MPI_PIN_DOMAIN [55,aa] ./a.out

The first domain is defined by the 0x55 mask. It contains all cores with even numbers {0,2,4,6}.

The second domain is defined by the 0xAA mask. It contains all cores with odd numbers
{1,3,5,7}.

I_MPI_PIN_ORDER

Set this environment variable to define the mapping order for MPI processes to domains as

specified by the I_MPI_PIN_DOMAIN environment variable.

Syntax

I_MPI_PIN_ORDER=<order>

Arguments

<order> Specify the ranking order

range
The domains are ordered according to the processor's BIOS

numbering. This is a platform-dependent numbering

scatter
The domains are ordered so that adjacent domains have

minimal sharing of common resources

compact
The domains are ordered so that adjacent domains share

common resources as much as possible. This is the default value

Intel® MPI Library Reference Manual for Linux* OS

118

Description

The optimal setting for this environment variable is application-specific. If adjacent MPI processes

prefer to share common resources, such as cores, caches, sockets, FSB, use the compact

value. Otherwise, use the scatter value. Use the range value as needed.

The options scatter and compact are available for both Intel® and non-Intel microprocessors,

but they may perform additional optimizations for Intel microprocessors than they perform for
non-Intel microprocessors.

Example

For the following configuration:

 Two socket nodes with four cores and a shared L2 cache for corresponding core pairs.

 8 MPI processes you want to run on the node using the following settings:

o For compact order:
I_MPI_PIN_DOMAIN=core

I_MPI_PIN_ORDER=compact

Picture 3.2-9 Compact Order Example

o For scatter order:

I_MPI_PIN_DOMAIN=core
I_MPI_PIN_ORDER=scatter

119

Picture 3.2-10 Scatter Order Example

3.3. Fabrics Control

This topic provides you with the information on how to use environment variables to control the

following fabrics:

 Communication fabrics

 Shared memory fabrics

 DAPL-capable network fabrics

 DAPL UD-capable network fabrics

 TCP-capable network fabrics

 TMI-capable network fabrics

 OFA*-capable network fabrics

3.3.1. Communication Fabrics Control

I_MPI_FABRICS

(I_MPI_DEVICE)

Select the particular network fabrics to be used.

Intel® MPI Library Reference Manual for Linux* OS

120

Syntax

I_MPI_FABRICS=<fabric>|<intra-node fabric>:<inter-nodes fabric>

Where <fabric> := {shm, dapl, tcp, tmi, ofa}

<intra-node fabric> := {shm, dapl, tcp, tmi, ofa}

<inter-nodes fabric> := {dapl, tcp, tmi, ofa}

Deprecated Syntax

I_MPI_DEVICE=<device>[:<provider>]

Arguments

<fabric> Define a network fabric

shm Shared-memory

dapl DAPL-capable network fabrics, such as InfiniBand*, iWarp*,

Dolphin*, and XPMEM* (through DAPL*)

tcp TCP/IP-capable network fabrics, such as Ethernet and InfiniBand*

(through IPoIB*)

tmi TMI-capable network fabrics including Intel® True Scale Fabric,

Myrinet*, (through Tag Matching Interface)

ofa OFA-capable network fabric including InfiniBand* (through

OFED* verbs)

Correspondence with I_MPI_DEVICE

<device> <fabric>

sock tcp

shm shm

ssm shm:tcp

rdma dapl

rdssm shm:dapl

<provider> Optional DAPL* provider name (only for the rdma and the rdssm

devices)

I_MPI_DAPL_PROVIDER=<provider> or
I_MPI_DAPL_UD_PROVIDER=<provider>

Use the <provider> specification only for the {rdma,rdssm} devices.

For example, to select the OFED* InfiniBand* device, use the following command:

$ mpiexec -n <# of processes> \

121

-env I_MPI_DEVICE rdssm:OpenIB-cma <executable>

For these devices, if <provider> is not specified, the first DAPL* provider in the /etc/dat.conf

file is used.

Description

Set this environment variable to select a specific fabric combination. If the requested fabric(s) is

not available, Intel® MPI Library can fall back to other fabric(s). See I_MPI_FALLBACK for details.

If the I_MPI_FABRICS environment variable is not defined, Intel® MPI Library selects the most

appropriate fabric combination automatically.

The exact combination of fabrics depends on the number of processes started per node.

 If all processes start on one node, the library uses shm intra-node communication.

 If the number of started processes is less than or equal to the number of available nodes, the
library uses the first available fabric from the fabrics list for inter-node communication.

 For other cases, the library uses shm for intra-node communication, and the first available

fabric from the fabrics list for inter-node communication. See I_MPI_FABRICS_LIST for details.

The shm fabric is available for both Intel® and non-Intel microprocessors, but it may perform

additional optimizations for Intel microprocessors than it performs for non-Intel microprocessors.

NOTE:

The combination of selected fabrics ensures that the job runs, but this combination may not

provide the highest possible performance for the given cluster configuration.

For example, to select shared-memory as the chosen fabric, use the following command:

$ mpiexec -n <# of processes> -env I_MPI_FABRICS shm <executable>

To select shared-memory and DAPL-capable network fabric as the chosen fabric combination, use

the following command:

$ mpiexec -n <# of processes> -env I_MPI_FABRICS shm:dapl <executable>

To enable Intel® MPI Library to select most appropriate fabric combination automatically, use the

following command:

$ mpiexec -n <# of procs> -perhost <# of procs per host> <executable>

Set the level of debug information to 2 or higher to check which fabrics have been initialized. See

I_MPI_DEBUG for details. For example:

[0] MPI startup(): shm and dapl data transfer modes

or

[0] MPI startup(): tcp data transfer mode

Intel® MPI Library Reference Manual for Linux* OS

122

NOTE:

If the I_MPI_FABRICS environment variable and the I_MPI_DEVICE environment variable are

set at the same level (command line, environment, configuration files), the I_MPI_FABRICS

environment variable has higher priority than the I_MPI_DEVICE environment variable.

I_MPI_FABRICS_LIST

Define a fabrics list.

Syntax

I_MPI_FABRICS_LIST=<fabrics list>

Where <fabrics list> := <fabric>,...,<fabric>

 <fabric> := {dapl, tcp, tmi, ofa}

Arguments

<fabrics list> Specify a list of fabrics

dapl,ofa,tcp,tmi This is the default value

dapl,tcp,ofa,tmi If you specify I_MPI_WAIT_MODE=enable, this is the default

value

Description

Set this environment variable to define a list of fabrics. The library uses the fabrics list to choose

the most appropriate fabrics combination automatically. For more information on fabric

combination, see I_MPI_FABRICS

For example, if I_MPI_FABRICS_LIST=dapl, tcp, and I_MPI_FABRICS is not defined, and the

initialization of DAPL-capable network fabrics fails, the library falls back to TCP-capable network
fabric. For more information on fallback, see I_MPI_FALLBACK.

I_MPI_FALLBACK

(I_MPI_FALLBACK_DEVICE)

Set this environment variable to enable fallback to the first available fabric.

Syntax

I_MPI_FALLBACK=<arg>

Deprecated Syntax

I_MPI_FALLBACK_DEVICE=<arg>

Arguments

<arg> Binary indicator

123

enable | yes | on | 1 Fall back to the first available fabric. This is the default value if

I_MPI_FABRICS(I_MPI_DEVICE) environment variable is not

set.

disable | no| off |0 Terminate the job if MPI cannot initialize the one of the fabrics

selected by the I_MPI_FABRICS environment variable. This is the

default value if the
I_MPI_FABRICS(I_MPI_DEVICE) environment variable is

set.

Description

Set this environment variable to control fallback to the first available fabric.

If I_MPI_FALLBACK is set to enable and an attempt to initialize a specified fabric fails, the library

uses the first available fabric from the list of fabrics. See I_MPI_FABRICS_LIST for details.

If I_MPI_FALLBACK is set to disable and an attempt to initialize a specified fabric fails, the

library terminates the MPI job.

NOTE:

If I_MPI_FABRICS is set and I_MPI_FALLBACK=enable, the library falls back to fabrics with

higher numbers in the fabrics list. For example, if I_MPI_FABRICS=dapl,

I_MPI_FABRICS_LIST=ofa,tmi,dapl,tcp, I_MPI_FALLBACK=enable and the initialization of

DAPL-capable network fabrics fails, the library falls back to TCP-capable network fabric.

I_MPI_EAGER_THRESHOLD

Change the eager/rendezvous message size threshold for all devices.

Syntax

I_MPI_EAGER_THRESHOLD=<nbytes>

Arguments

<nbytes> Set the eager/rendezvous message size threshold

> 0 The default <nbytes> value is equal to 262144 bytes

Description

Set this environment variable to control the protocol used for point-to-point communication:

 Messages shorter than or equal in size to <nbytes> are sent using the eager protocol.

 Messages larger than <nbytes> are sent using the rendezvous protocol. The rendezvous

protocol uses memory more efficiently.

I_MPI_INTRANODE_EAGER_THRESHOLD

Change the eager/rendezvous message size threshold for intra-node communication mode.

Intel® MPI Library Reference Manual for Linux* OS

124

Syntax

I_MPI_INTRANODE_EAGER_THRESHOLD=<nbytes>

Arguments

<nbytes> Set the eager/rendezvous message size threshold for intra-node

communication

> 0 The default <nbytes> value is equal to 262144 bytes for all

fabrics except shm. For shm, cutover point is equal to the value of

I_MPI_SHM_CELL_SIZE environment variable

Description

Set this environment variable to change the protocol used for communication within the node:

 Messages shorter than or equal in size to <nbytes> are sent using the eager protocol.

 Messages larger than <nbytes> are sent using the rendezvous protocol. The rendezvous

protocol uses the memory more efficiently.

If I_MPI_INTRANODE_EAGER_THRESHOLD is not set, the value of I_MPI_EAGER_THRESHOLD is

used.

I_MPI_INTRANODE_DIRECT_COPY

Turn on/off the intranode direct copy communication mode.

Syntax

I_MPI_INTRANODE_DIRECT_COPY=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Turn on the direct copy communication mode

disable | no | off | 0 Turn off the direct copy communication mode. This is the default

value

Description

Set this environment variable to specify the communication mode within the node. If the direct
copy communication mode is enabled, data transfer algorithms are selected according to the

following scheme:

 Messages shorter than or equal to the threshold value of the

I_MPI_INTRANODE_EAGER_THRESHOLD environment variable are transferred using the shared

memory.

I_MPI_SPIN_COUNT

Control the spin count value.

125

Syntax

I_MPI_SPIN_COUNT=<scount>

Arguments

<scount> Define the loop spin count when polling fabric(s)

> 0 The default <scount> value is equal to 1 when more than one

process runs per processor/core. Otherwise the value equals

250.The maximum value is equal to 2147483647

Description

Set the spin count limit. The loop for polling the fabric(s) spins <scount> times before the library

releases the processes if no incoming messages are received for processing. Within every spin loop,

the shm fabric (if enabled) is polled an extra I_MPI_SPIN_COUNT times. Smaller values for

<scount> cause the Intel® MPI Library to release the processor more frequently.

Use the I_MPI_SPIN_COUNT environment variable for tuning application performance. The best

value for <scount> can be chosen on an experimental basis. It depends on the particular

computational environment and application.

I_MPI_SCALABLE_OPTIMIZATION

(I_MPI_SOCK_SCALABLE_OPTIMIZATION)

Turn on/off scalable optimization of the network fabric communication.

Syntax

I_MPI_SCALABLE_OPTIMIZATION=<arg>

Deprecated Syntax

I_MPI_SOCK_SCALABLE_OPTIMIZATION=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1
Turn on scalable optimization of the network fabric

communication. This is the default for 16 or more processes

disable | no | off | 0
Turn off scalable optimization of the network fabric

communication. This is the default for less than 16 processes

Description

Set this environment variable to enable scalable optimization of the network fabric communication.

In most cases, using optimization decreases latency and increases bandwidth for a large number

of processes.

Intel® MPI Library Reference Manual for Linux* OS

126

NOTE:

Old notification I_MPI_SOCK_SCALABLE_OPTIMIZATION is equal to

I_MPI_SCALABLE_OPTIMIZATION for tcp fabric.

I_MPI_WAIT_MODE

Turn on/off wait mode.

Syntax

I_MPI_WAIT_MODE=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Turn on the wait mode

disable | no | off | 0 Turn off the wait mode. This is the default

Description

Set this environment variable to control the wait mode. If this mode is enabled, the processes wait

for receiving messages without polling the fabric(s). This mode can save CPU time for other tasks.

Use the Native POSIX Thread Library* with the wait mode for shm communications.

NOTE:

To check which version of the thread library is installed, use the following command:

$ getconf GNU_LIBPTHREAD_VERSION

I_MPI_DYNAMIC_CONNECTION

(I_MPI_USE_DYNAMIC_CONNECTIONS)

Turn on/off the dynamic connection establishment.

Syntax

I_MPI_DYNAMIC_CONNECTION=<arg>

Deprecated Syntax

I_MPI_USE_DYNAMIC_CONNECTIONS=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Turn on the dynamic connection establishment. This is the

127

default for 64 or more processes

disable | no | off | 0
Turn off the dynamic connection establishment. This is the

default for less than 64 processes

Description

Set this environment variable to control dynamic connection establishment.

 If this mode is enabled, all connections are established at the time of the first communication

between each pair of processes.

 If this mode is disabled, all connections are established upfront.

The default value depends on a number of processes in the MPI job. The dynamic connection

establishment is off if the total number of processes is less than 64.

3.3.2. Shared Memory Control

I_MPI_SHM_CACHE_BYPASS

(I_MPI_CACHE_BYPASS)

Control the message transfer algorithm for the shared memory.

Syntax

I_MPI_SHM_CACHE_BYPASS=<arg>

Deprecated Syntax

I_MPI_CACHE_BYPASS=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Enable message transfer bypass cache. This is the default value

disable| no | off | 0 Disable message transfer bypass cache

Description

Set this environment variable to enable/disable message transfer bypass cache for the shared

memory. When enabled, the MPI sends the messages greater than or equal in size to the value

specified by the I_MPI_SHM_CACHE_BYPASS_THRESHOLD environment variable through the bypass

cache. This feature is enabled by default.

I_MPI_SHM_CACHE_BYPASS_THRESHOLDS

(I_MPI_CACHE_BYPASS_THRESHOLDS)

Set the message copying algorithm threshold.

Intel® MPI Library Reference Manual for Linux* OS

128

Syntax

I_MPI_SHM_CACHE_BYPASS_THRESHOLDS=<nb_send>,<nb_recv>[,<nb_send_pk>,<nb_recv_pk

>]

Deprecated Syntax

I_MPI_CACHE_BYPASS_THRESHOLDS=<nb_send>,<nb_recv>[,<nb_send_pk>,<nb_recv_pk>]

Arguments

<nb_send> Set the threshold for sent messages in the following situations:

 Processes are pinned on cores that are not located in the same

physical processor package

 Processes are not pinned

>= 0  For machines optimized with Intel® Streaming SIMD

Extensions 4.2 (Intel® SSE4.2) or Intel® AES New Instructions

(Intel® AES-NI), the default <nb_send> value is -1. This value

disables the copying bypass cache

 For other architectures, the default <nb_send> value is 16,384

bytes

<nb_recv> Set the threshold for received messages in the following

situations:

 Processes are pinned on cores that are not located in the same
physical processor package

 Processes are not pinned

>= 0  For machines optimized with Intel® SSE4.2, the default

<nb_send> value is -1. This value disables the copying bypass

cache

 For machines optimized with Intel® AES-NI, the default

<nb_send> value is MAX(1Mb, L3/NP), where L3 indicates the

size of Level 3 cache and NP indicates the number of processes

on the node

 For other architectures, the default <nb_recv_pk> value is

2,097,152 bytes

<nb_send_pk> Set the threshold for sent messages when processes are pinned on

cores located in the same physical processor package

>= 0 The default <nb_send_pk> value is -1 (copying bypass cache is

disabled)

<nb_recv_pk> Set the threshold for received messages when processes are

pinned on cores located in the same physical processor package

>= 0  For machines optimized with Intel® SSE4.2, the default

<nb_send> value is -1. This value disables the copying bypass

129

cache

 For machines optimized with Intel® AES-NI, the default

<nb_send> value is MAX(1Mb, L3/NP), where L3 indicates the

size of Level 3 cache and NP indicates the number of processes

on the node

 For other architectures, the default <nb_recv_pk> value is

2,097,152 bytes

Description

Set this environment variable to control the thresholds for the message copying algorithm. MPI
copies messages greater than or equal in size to the defined threshold value so that the messages

bypass the cache. The value of -1 disables cache bypass. This environment variable is valid only

when I_MPI_SHM_CACHE_BYPASS is enabled.

This environment variable is available for both Intel and non-Intel microprocessors, but it may
perform additional optimizations for Intel microprocessors than it performs for non-Intel

microprocessors.

I_MPI_SHM_FBOX

Control the usage of the shared memory fast-boxes.

Syntax

I_MPI_SHM_FBOX=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Turn on fast box usage. This is the default value.

disable | no | off | 0 Turn off fast box usage.

Description

Set this environment variable to control the usage of fast-boxes. Each pair of MPI processes on the

same computing node has two shared memory fast-boxes, for sending and receiving eager
messages.

Turn off the usage of fast-boxes to avoid the overhead of message synchronization when the

application uses mass transfer of short non-blocking messages.

I_MPI_SHM_FBOX_SIZE

Set the size of the shared memory fast-boxes.

Syntax

I_MPI_SHM_FBOX_SIZE=<nbytes>

Intel® MPI Library Reference Manual for Linux* OS

130

Arguments

<nbytes> Size of shared memory fast-boxes in bytes

> 0 The default <nbytes> value is equal to 65472 bytes

Description

Set this environment variable to define the size of shared memory fast-boxes. The value must be

multiple of 64.

I_MPI_SHM_CELL_NUM

Change the number of cells in the shared memory receiving queue.

Syntax

I_MPI_SHM_CELL_NUM=<num>

Arguments

<num> The number of shared memory cells

> 0 The default value is 128

Description

Set this environment variable to define the number of cells in the shared memory receive queue.

Each MPI process has own shared memory receive queue, where other processes put eager
messages. The queue is used when shared memory fast-boxes are blocked by another MPI request.

I_MPI_SHM_CELL_SIZE

Change the size of a shared memory cell.

Syntax

I_MPI_SHM_CELL_SIZE=<nbytes>

Arguments

<nbytes> Size of a shared memory cell, in bytes

> 0 The default <nbytes> value is equal to 65472 bytes

Description

Set this environment variable to define the size of shared memory cells. The value must be a

multiple of 64.

If a value is set, I_MPI_INTRANODE_EAGER_THRESHOLD is also changed and becomes equal to the

given value.

I_MPI_SHM_LMT

Control the usage of large message transfer (LMT) mechanism for the shared memory.

131

Syntax

I_MPI_SHM_LMT=<arg>

Deprecated Syntax

I_MPI_INTRANODE_DIRECT_COPY=<arg>

Arguments

<arg> Binary indicator

shm
Turn on the shared memory copy LMT mechanism. This is the

default value

disable | no | off | 0 Turn off LMT mechanism

Description

Set this environment variable to control the usage of the large message transfer (LMT) mechanism.

To transfer rendezvous messages, you can use the LMT mechanism by employing either of the
following implementations:

 Use intermediate shared memory queues to send messages.

 Use direct copy mechanism that transfers messages without intermediate buffer.

NOTE:

Two arguments of the I_MPI_SHM_LMT environment variable are related to the

I_MPI_INTRANODE_DIRECT_COPY environment variable:

 I_MPI_SHM_LMT=direct is equal to the deprecated setting

I_MPI_INTRANODE_DIRECT_COPY=enable.

 I_MPI_SHM_LMT=shm is equal to the deprecated setting

I_MPI_INTRANODE_DIRECT_COPY=disable.

I_MPI_SHM_LMT_BUFFER_NUM

(I_MPI_SHM_NUM_BUFFERS)

Change the number of shared memory buffers for the large message transfer (LMT) mechanism.

Syntax

I_MPI_SHM_LMT_BUFFER_NUM=<num>

Deprecated Syntax

I_MPI_SHM_NUM_BUFFERS=<num>

Arguments

<num> The number of shared memory buffers for each process pair

Intel® MPI Library Reference Manual for Linux* OS

132

> 0 The default value is 8

Description

Set this environment variable to define the number of shared memory buffers between each

process pair.

I_MPI_SHM_LMT_BUFFER_SIZE

(I_MPI_SHM_BUFFER_SIZE)

Change the size of shared memory buffers for the LMT mechanism.

Syntax

I_MPI_SHM_LMT_BUFFER_SIZE=<nbytes>

Deprecated Syntax

I_MPI_SHM_BUFFER_SIZE=<nbytes>

Arguments

<nbytes> The size of shared memory buffers in bytes

> 0 The default <nbytes> value is equal to 32768 bytes

Description

Set this environment variable to define the size of shared memory buffers for each pair of

processes.

I_MPI_SSHM

Control the usage of the scalable shared memory mechanism.

Syntax

I_MPI_SSHM =<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Turn on the usage of this mechanism

disable | no | off | 0 Turn off the usage of this mechanism. This is the default value

Description

Set this environment variable to control the usage of an alternative shared memory mechanism.

This mechanism replaces the shared memory fast-boxes, receive queues and LMT mechanism.

If a value is set, the I_MPI_INTRANODE_EAGER_THRESHOLD environment variable is changed and

becomes equal to 262,144 bytes.

133

I_MPI_SSHM_BUFFER_NUM

Change the number of shared memory buffers for the alternative shared memory mechanism.

Syntax

I_MPI_SSHM_BUFFER_NUM=<num>

Arguments

<num> The number of shared memory buffers for each process pair

> 0 The default value is 4

Description

Set this environment variable to define the number of shared memory buffers between each

process pair.

I_MPI_SSHM_BUFFER_SIZE

Change the size of shared memory buffers for the alternative shared memory mechanism.

Syntax

I_MPI_SSHM_BUFFER_SIZE=<nbytes>

Arguments

<nbytes> The size of shared memory buffers in bytes

> 0 The default <nbytes> value is 65472 bytes

Description

Set this environment variable to define the size of shared memory buffers for each pair of

processes.

I_MPI_SSHM_DYNAMIC_CONNECTION

Control the dynamic connection establishment for the alternative shared memory mechanism.

Syntax

I_MPI_SSHM_DYNAMIC_CONNECTION=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Turn on the dynamic connection establishment

disable | no | off | 0 Turn off the dynamic connection establishment. This is the default

value

Intel® MPI Library Reference Manual for Linux* OS

134

Description

Set this environment variable to control the dynamic connection establishment.

 If this mode is enabled, all connections are established at the time of the first communication

between each pair of processes.

 If this mode is disabled, all connections are established upfront.

I_MPI_SHM_BYPASS

(I_MPI_INTRANODE_SHMEM_BYPASS, I_MPI_USE_DAPL_INTRANODE)

Turn on/off the intra-node communication mode through network fabric along with shm.

Syntax

I_MPI_SHM_BYPASS=<arg>

Deprecated Syntaxes

I_MPI_INTRANODE_SHMEM_BYPASS=<arg>

I_MPI_USE_DAPL_INTRANODE=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Turn on the intra-node communication through network fabric

disable | no | off | 0 Turn off the intra-node communication through network fabric.

This is the default

Description

Set this environment variable to specify the communication mode within the node. If the intra-

node communication mode through network fabric is enabled, data transfer algorithms are
selected according to the following scheme:

 Messages shorter than or equal in size to the threshold value of the

I_MPI_INTRANODE_EAGER_THRESHOLD environment variable are transferred using shared

memory.

 Messages larger than the threshold value of the

I_MPI_INTRANODE_EAGER_THRESHOLD environment variable are transferred through the

network fabric layer.

NOTE:

This environment variable is applicable only when shared memory and a network fabric are

turned on either by default or by setting the I_MPI_FABRICSenvironment variable to

shm:<fabric> or an equivalent I_MPI_DEVICE setting. This mode is available only for dapl

and tcp fabrics.

135

I_MPI_SHM_SPIN_COUNT

Control the spin count value for the shared memory fabric.

Syntax

I_MPI_SHM_SPIN_COUNT=<shm_scount>

Arguments

<scount> Define the spin count of the loop when polling the shm fabric

> 0 When internode communication uses the dapl or tcp fabric, the

default <shm_scount> value is equal to 100 spins

When internode communication uses the ofa, tmi or dapl (DAPL

UD-enabled only) fabric, the default <shm_scount> value is equal

to 10 spins. The maximum value is equal to 2147483647

Description

Set the spin count limit of the shared memory fabric to increase the frequency of polling. This

configuration allows polling of the shm fabric <shm_scount> times before the control is passed to

the overall network fabric polling mechanism.

To tune application performance, use the I_MPI_SHM_SPIN_COUNT environment variable. The

best value for <shm_scount> can be chosen on an experimental basis. It depends largely on the

application and the particular computation environment. An increase in the <shm_scount> value

will benefit multi-core platforms when the application uses topological algorithms for message
passing.

3.3.3. DAPL-capable Network Fabrics Control

I_MPI_DAPL_PROVIDER

Define the DAPL provider to load.

Syntax

I_MPI_DAPL_PROVIDER=<name>

Arguments

<name> Define the name of DAPL provider to load

Description

Set this environment variable to define the name of DAPL provider to load. This name is also

defined in the dat.conf configuration file.

I_MPI_DAT_LIBRARY

Select the DAT library to be used for DAPL* provider.

Intel® MPI Library Reference Manual for Linux* OS

136

Syntax

I_MPI_DAT_LIBRARY=<library>

Arguments

<library> Specify the DAT library for DAPL provider to be used. Default

values are libdat.so or libdat.so.1 for DAPL* 1.2 providers

and libdat2.so or libdat2.so.2 for DAPL* 2.0 providers

Description

Set this environment variable to select a specific DAT library to be used for DAPL provider. If the

library is not located in the dynamic loader search path, specify the full path to the DAT library.
This environment variable affects only on DAPL and DAPL UD capable fabrics.

I_MPI_DAPL_TRANSLATION_CACHE

(I_MPI_RDMA_TRANSLATION_CACHE)

Turn on/off the memory registration cache in the DAPL path.

Syntax

I_MPI_DAPL_TRANSLATION_CACHE=<arg>

Deprecated Syntax

I_MPI_RDMA_TRANSLATION_CACHE=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Turn on the memory registration cache. This is the default

disable | no | off | 0 Turn off the memory registration cache

Description

Set this environment variable to turn on/off the memory registration cache in the DAPL path.

The cache substantially increases performance, but may lead to correctness issues in certain

situations. See product Release Notes for further details.

I_MPI_DAPL_TRANSLATION_CACHE_AVL_TREE

Enable/disable the AVL tree* based implementation of the RDMA translation cache in the DAPL

path.

Syntax

I_MPI_DAPL_TRANSLATION_CACHE_AVL_TREE=<arg>

137

Arguments

<arg> Binary indicator

enable | yes | on | 1 Turn on the AVL tree based RDMA translation cache

disable | no | off | 0 Turn off the AVL tree based RDMA translation cache. This is the

default value

Description

Set this environment variable to enable the AVL tree based implementation of RDMA translation

cache in the DAPL path. When the search in RDMA translation cache handles over 10,000 elements,
the AVL tree based RDMA translation cache is faster than the default implementation.

I_MPI_DAPL_DIRECT_COPY_THRESHOLD

(I_MPI_RDMA_EAGER_THRESHOLD, RDMA_IBA_EAGER_THRESHOLD)

Change the threshold of the DAPL direct-copy protocol.

Syntax

I_MPI_DAPL_DIRECT_COPY_THRESHOLD=<nbytes>

Deprecated Syntaxes

I_MPI_RDMA_EAGER_THRESHOLD=<nbytes>

RDMA_IBA_EAGER_THRESHOLD=<nbytes>

Arguments

<nbytes> Define the DAPL direct-copy protocol threshold

> 0 The default <nbytes> value is equal to 23728 bytes

Description

Set this environment variable to control the DAPL direct-copy protocol threshold. Data transfer

algorithms for the DAPL-capable network fabrics are selected based on the following scheme:

 Messages shorter than or equal to <nbytes> are sent using the eager protocol through the

internal pre-registered buffers. This approach is faster for short messages.

 Messages larger than <nbytes> are sent using the direct-copy protocol. It does not use any

buffering but involves registration of memory on sender and receiver sides. This approach is

faster for large messages.

This environment variable is available for both Intel® and non-Intel microprocessors, but it may

perform additional optimizations for Intel microprocessors than it performs for non-Intel
microprocessors.

I_MPI_DAPL_EAGER_MESSAGE_AGGREGATION

Intel® MPI Library Reference Manual for Linux* OS

138

Control the use of concatenation for adjourned MPI send requests. Adjourned MPI send requests

are those that cannot be sent immediately.

Syntax

I_MPI_DAPL_EAGER_MESSAGE_AGGREGATION =<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Enable the concatenation for adjourned MPI send requests

disable | no | off | 0 Disable the concatenation for adjourned MPI send requests. This is

the default value

Set this environment variable to control the use of concatenation for adjourned MPI send requests

intended for the same MPI rank. In some cases, this mode can improve the performance of

applications, especially when MPI_Isend() is used with short message sizes and the same

destination rank, such as:

for(i = 0; i< NMSG; i++)

 {ret = MPI_Isend(sbuf[i], MSG_SIZE, datatype, dest , tag, \

comm, &req_send[i]);

 }

I_MPI_DAPL_DYNAMIC_CONNECTION_MODE

(I_MPI_DYNAMIC_CONNECTION_MODE,
I_MPI_DYNAMIC_CONNECTIONS_MODE)

Choose the algorithm for establishing the DAPL* connections.

Syntax

I_MPI_DAPL_DYNAMIC_CONNECTION_MODE=<arg>

Deprecated Syntax

I_MPI_DYNAMIC_CONNECTION_MODE=<arg>

I_MPI_DYNAMIC_CONNECTIONS_MODE=<arg>

Arguments

<arg> Mode selector

reject Deny one of the two simultaneous connection requests. This is the

default

disconnect
Deny one of the two simultaneous connection requests after both

connections have been established

139

Description

Set this environment variable to choose the algorithm for handling dynamically established

connections for DAPL-capable fabrics according to the following scheme:

 In the reject mode, if two processes initiate the connection simultaneously, one of the

requests is rejected.

 In the disconnect mode, both connections are established, but then one is disconnected. The

disconnect mode is provided to avoid a bug in certain DAPL* providers.

I_MPI_DAPL_SCALABLE_PROGRESS

(I_MPI_RDMA_SCALABLE_PROGRESS)

Turn on/off scalable algorithm for DAPL read progress.

Syntax

I_MPI_DAPL_SCALABLE_PROGRESS=<arg>

Deprecated Syntax

I_MPI_RDMA_SCALABLE_PROGRESS=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1

Turn on scalable algorithm. When the number of processes is

larger than 128, this is the default value

disable | no | off | 0

Turn off scalable algorithm. When the number of processes is less

than or equal to 128, this is the default value

Description

Set this environment variable to enable scalable algorithm for the DAPL read progress. In some

cases, this provides advantages for systems with many processes.

I_MPI_DAPL_BUFFER_NUM

(I_MPI_RDMA_BUFFER_NUM, NUM_RDMA_BUFFER)

Change the number of internal pre-registered buffers for each process pair in the DAPL path.

Syntax

I_MPI_DAPL_BUFFER_NUM=<nbuf>

Deprecated Syntaxes

I_MPI_RDMA_BUFFER_NUM=<nbuf>

NUM_RDMA_BUFFER=<nbuf>

Intel® MPI Library Reference Manual for Linux* OS

140

Arguments

<nbuf> Define the number of buffers for each pair in a process group

> 0 The default value is 16

Description

Set this environment variable to change the number of the internal pre-registered buffers for each

process pair in the DAPL path.

NOTE:

The more pre-registered buffers are available, the more memory is used for every established

connection.

I_MPI_DAPL_BUFFER_SIZE

(I_MPI_RDMA_BUFFER_SIZE, I_MPI_RDMA_VBUF_TOTAL_SIZE)

Change the size of internal pre-registered buffers for each process pair in the DAPL path.

Syntax

I_MPI_DAPL_BUFFER_SIZE=<nbytes>

Deprecated Syntaxes

I_MPI_RDMA_BUFFER_SIZE=<nbytes>

I_MPI_RDMA_VBUF_TOTAL_SIZE=<nbytes>

Arguments

<nbytes> Define the size of pre-registered buffers

> 0 The default <nbytes> value is equal to 23808 bytes

Description

Set this environment variable to define the size of the internal pre-registered buffer for each

process pair in the DAPL path. The actual size is calculated by adjusting the <nbytes> to align the

buffer to an optimal value.

I_MPI_DAPL_RNDV_BUFFER_ALIGNMENT

(I_MPI_RDMA_RNDV_BUFFER_ALIGNMENT,

I_MPI_RDMA_RNDV_BUF_ALIGN)

Define the alignment of the sending buffer for the DAPL direct-copy transfers.

141

Syntax

I_MPI_DAPL_RNDV_BUFFER_ALIGNMENT=<arg>

Deprecated Syntaxes

I_MPI_RDMA_RNDV_BUFFER_ALIGNMENT=<arg>

I_MPI_RDMA_RNDV_BUF_ALIGN=<arg>

Arguments

<arg> Define the alignment for the sending buffer

> 0 and a power of 2 The default value is 64

Set this environment variable to define the alignment of the sending buffer for DAPL direct-copy

transfers. When a buffer specified in a DAPL operation is aligned to an optimal value, the data
transfer bandwidth may be increased.

I_MPI_DAPL_RDMA_RNDV_WRITE

(I_MPI_RDMA_RNDV_WRITE, I_MPI_USE_RENDEZVOUS_RDMA_WRITE)

Turn on/off the RDMA Write-based rendezvous direct-copy protocol in the DAPL path.

Syntax

I_MPI_DAPL_RDMA_RNDV_WRITE=<arg>

Deprecated Syntaxes

I_MPI_RDMA_RNDV_WRITE=<arg>

I_MPI_USE_RENDEZVOUS_RDMA_WRITE=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Turn on the RDMA Write rendezvous direct-copy protocol

disable | no | off | 0 Turn off the RDMA Write rendezvous direct-copy protocol

Description

Set this environment variable to select the RDMA Write-based rendezvous direct-copy protocol in

the DAPL path. Certain DAPL* providers have a slow RDMA Read implementation on certain
platforms. Switching on the rendezvous direct-copy protocol based on the RDMA Write operation

can increase performance in these cases. The default value depends on the DAPL provider
attributes.

I_MPI_DAPL_CHECK_MAX_RDMA_SIZE

(I_MPI_RDMA_CHECK_MAX_RDMA_SIZE)

Intel® MPI Library Reference Manual for Linux* OS

142

Check the value of the DAPL attribute, max_rdma_size.

Syntax

I_MPI_DAPL_CHECK_MAX_RDMA_SIZE=<arg>

Deprecated Syntax

I_MPI_RDMA_CHECK_MAX_RDMA_SIZE=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Check the value of the DAPL* attribute max_rdma_size

disable | no | off | 0
Do not check the value of the DAPL* attribute max_rdma_size.

This is the default value

Description

Set this environment variable to control message fragmentation according to the following scheme:

 If this mode is enabled, the Intel® MPI Library fragmentizes the messages bigger than the

value of the DAPL attribute max_rdma_size

 If this mode is disabled, the Intel® MPI Library does not take into account the value of the

DAPL attribute max_rdma_size for message fragmentation

I_MPI_DAPL_MAX_MSG_SIZE

(I_MPI_RDMA_MAX_MSG_SIZE)

Control message fragmentation threshold.

Syntax

I_MPI_DAPL_MAX_MSG_SIZE=<nbytes>

Deprecated Syntax

I_MPI_RDMA_MAX_MSG_SIZE=<nbytes>

Arguments

<nbytes> Define the maximum message size that can be sent through DAPL

without fragmentation

> 0 If the I_MPI_DAPL_CHECK_MAX_RDMA_SIZE environment variable is

enabled, the default <nbytes> value is equal to the max_rdma_size

DAPL attribute value. Otherwise the default value is MAX_INT

Description

Set this environment variable to control message fragmentation size according to the following

scheme:

143

 If the I_MPI_DAPL_CHECK_MAX_RDMA_SIZE environment variable is set to disable, the

Intel® MPI Library fragmentizes the messages whose sizes are greater than <nbytes>.

 If the I_MPI_DAPL_CHECK_MAX_RDMA_SIZE environment variable is set to enable, the Intel®

MPI Library fragmentizes the messages whose sizes are greater than the minimum of

<nbytes> and the max_rdma_size DAPL* attribute value.

I_MPI_DAPL_CONN_EVD_SIZE

(I_MPI_RDMA_CONN_EVD_SIZE, I_MPI_CONN_EVD_QLEN)

Define the event queue size of the DAPL event dispatcher for connections.

Syntax

I_MPI_DAPL_CONN_EVD_SIZE=<size>

Deprecated Syntaxes

I_MPI_RDMA_CONN_EVD_SIZE=<size>

I_MPI_CONN_EVD_QLEN=<size>

Arguments

<size> Define the length of the event queue

> 0 The default value is 2*number of processes + 32 in the MPI job

Description

Set this environment variable to define the event queue size of the DAPL event dispatcher that

handles connection related events. If this environment variable is set, the minimum value between

<size> and the value obtained from the provider is used as the size of the event queue. The

provider is required to supply a queue size that equal or larger than the calculated value.

I_MPI_DAPL_SR_THRESHOLD

Change the threshold of switching send/recv to rdma path for DAPL wait mode.

Syntax

I_MPI_DAPL_SR_THRESHOLD=<arg>

Arguments

<nbytes> Define the message size threshold of switching send/recv to rdma

>= 0 The default <nbytes> value is 256 bytes

Description

Set this environment variable to control the protocol used for point-to-point communication in
DAPL wait mode:

Intel® MPI Library Reference Manual for Linux* OS

144

 Messages shorter than or equal in size to <nbytes> are sent using DAPL send/recv data

transfer operations.

 Messages greater in size than <nbytes> are sent using DAPL RDMA WRITE or RDMA WRITE

immediate data transfer operations.

I_MPI_DAPL_SR_BUF_NUM

Change the number of internal pre-registered buffers for each process pair used in DAPL wait

mode for send/recv path.

Syntax

I_MPI_DAPL_SR_BUF_NUM=<nbuf>

Arguments

<nbuf>
Define the number of send/recv buffers for each pair in a process

group

> 0 The default value is 32

Description

Set this environment variable to change the number of the internal send/recv pre-registered

buffers for each process pair.

I_MPI_DAPL_RDMA_WRITE_IMM

(I_MPI_RDMA_WRITE_IMM)

Enable/disable RDMA Write with immediate data InfiniBand (IB) extension in DAPL wait mode.

Syntax

I_MPI_DAPL_RDMA_WRITE_IMM=<arg>

Deprecated syntax

I_MPI_RDMA_WRITE_IMM=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Turn on RDMA Write with immediate data IB extension

disable | no | off |

0 Turn off RDMA Write with immediate data IB extension

Description

Set this environment variable to utilize RDMA Write with immediate data IB extension. The

algorithm is enabled if this environment variable is set and a certain DAPL provider attribute

indicates that RDMA Write with immediate data IB extension is supported.

145

I_MPI_DAPL_DESIRED_STATIC_CONNECTIONS_NUM

Define the number of processes that establish DAPL static connections at the same time.

Syntax

I_MPI_DAPL_DESIRED_STATIC_CONNECTIONS_NUM=<num_procesess>

Arguments

<num_procesess>
Define the number of processes that establish DAPL static

connections at the same time

> 0 The default <num_procesess> value is equal to 256

Description

Set this environment variable to control the algorithm of DAPL static connection establishment.

If the number of processes in the MPI job is less than or equal to <num_procesess>, all MPI

processes establish the static connections simultaneously. Otherwise, the processes are distributed

into several groups. The number of processes in each group is calculated to be close to

<num_procesess>. Then static connections are established in several iterations, including

intergroup connection setup.

3.3.4. DAPL UD-capable Network Fabrics Control

I_MPI_DAPL_UD

Enable/disable using DAPL UD path.

Syntax

I_MPI_DAPL_UD=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Turn on using DAPL UD IB extension

disable | no | off |

0 Turn off using DAPL UD IB extension. This is the default value

Description

Set this environment variable to enable DAPL UD path for transferring data. The algorithm is

enabled if you set this environment variable and a certain DAPL provider attribute indicates that
UD IB extension is supported.

I_MPI_DAPL_UD_PROVIDER

Define the DAPL provider to work with IB UD transport.

Intel® MPI Library Reference Manual for Linux* OS

146

Syntax

I_MPI_DAPL_UD_PROVIDER=<name>

Arguments

<name> Define the name of DAPL provider to load

Description

Set this environment variable to define the name of DAPL provider to load. This name is also

defined in the dat.conf configuration file. Make sure that specified DAPL provider supports UD IB

extension.

I_MPI_DAPL_UD_DIRECT_COPY_THRESHOLD

Change the message size threshold of the DAPL UD direct-copy protocol.

Syntax

I_MPI_DAPL_UD_DIRECT_COPY_THRESHOLD=<nbytes>

Arguments

<nbytes> Define the DAPL UD direct-copy protocol threshold

> 0 The default <nbytes> value is equal to 16456 bytes

Description

Set this environment variable to control the DAPL UD direct-copy protocol threshold. Data transfer

algorithms for the DAPL-capable network fabrics are selected based on the following scheme:

 Messages shorter than or equal to <nbytes> are sent using the eager protocol through the

internal pre-registered buffers. This approach is faster for short messages.

 Messages larger than <nbytes> are sent using the direct-copy protocol. It does not use any

buffering but involves registration of memory on sender and receiver sides. This approach is
faster for large messages.

This environment variable is available for both Intel® and non-Intel microprocessors, but it may
perform additional optimizations for Intel microprocessors than it performs for non-Intel

microprocessors.

I_MPI_DAPL_UD_RECV_BUFFER_NUM

Change the number of the internal pre-registered UD buffers for receiving messages.

Syntax

I_MPI_DAPL_UD_RECV_BUFFER_NUM=<nbuf>

Arguments

<nbuf> Define the number of buffers for receiving messages

147

> 0
The default value is 16 + n*4 where n is a total number of process

in MPI job

Description

Set this environment variable to change the number of the internal pre-registered buffers for

receiving messages. These buffers are common for all connections or process pairs.

NOTE:

The pre-registered buffers use up memory, however they help avoid the loss of packets.

I_MPI_DAPL_UD_SEND_BUFFER_NUM

Change the number of internal pre-registered UD buffers for sending messages.

Syntax

I_MPI_DAPL_UD_SEND_BUFFER_NUM=<nbuf>

Arguments

<nbuf> Define the number of buffers for sending messages

> 0

The default value is 16 + n*4 where n is a total number of process

in MPI job

Description

Set this environment variable to change the number of the internal pre-registered buffers for

sending messages. These buffers are common for all connections or process pairs.

NOTE:

The pre-registered buffers use up memory, however they help avoid the loss of packets.

I_MPI_DAPL_UD_ACK_SEND_POOL_SIZE

Change the number of ACK UD buffers for sending messages.

Syntax

I_MPI_DAPL_UD_ACK_SEND_POOL_SIZE=<nbuf>

Arguments

<nbuf> Define the number of ACK UD buffers for sending messages

> 0 The default value is 256

Intel® MPI Library Reference Manual for Linux* OS

148

Description

Set this environment variable to change the number of the internal pre-registered ACK buffers for

sending service messages. These buffers are common for all connections or process pairs.

I_MPI_DAPL_UD_ACK_RECV_POOL_SIZE

Change the number of ACK UD buffers for receiving messages.

Syntax

I_MPI_DAPL_UD_ACK_RECV_POOL_SIZE=<nbuf>

Arguments

<nbuf> Define the number of ACK UD buffers for receiving messages

> 0
The default value is 512+n*4, where n is total number of process in

MPI job

Description

Set this environment variable to change the number of the internal pre-registered ACK buffers for

receiving service messages. These buffers are common for all connections or process pairs.

I_MPI_DAPL_UD_TRANSLATION_CACHE

Turn on/off the memory registration cache in the DAPL UD path.

Syntax

I_MPI_DAPL_UD_TRANSLATION_CACHE=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Turn on the memory registration cache. This is the default

disable | no | off | 0 Turn off the memory registration cache

Description

Set this environment variable to turn off the memory registration cache in the DAPL UD path.

Using the cache substantially improves performance. See product Release Notes for further details.

I_MPI_DAPL_UD_TRANSLATION_CACHE_AVL_TREE

Enable/disable the AVL* tree based implementation of RDMA translation cache in the DAPL UD

path.

Syntax

I_MPI_DAPL_UD_TRANSLATION_CACHE_AVL_TREE=<arg>

149

Arguments

<arg> Binary indicator

enable | yes | on | 1 Turn on the AVL tree based RDMA translation cache

disable | no | off |

0
Turn off the AVL tree based RDMA translation cache. This is the

default value

Description

Set this environment variable to enable the AVL tree based implementation of RDMA translation

cache in the DAPL UD path. When the search in RDMA translation cache handles over 10,000
elements, the AVL tree based RDMA translation cache is faster than the default implementation.

I_MPI_DAPL_UD_REQ_EVD_SIZE

Define the event queue size of the DAPL UD event dispatcher for sending data transfer operations.

Syntax

I_MPI_DAPL_UD_REQ_EVD_SIZE=<size>

Arguments

<size> Define the length of the event queue

> 0 The default value is 2,000

Description

Set this environment variable to define the event queue size of the DAPL event dispatcher that

handles completions of sending DAPL UD data transfer operations (DTO). If this environment

variable is set, the minimum value between <size> and the value obtained from the provider is

used as the size of the event queue. The provider is required to supply a queue size that is at least

equal to the calculated value, but it can also provide a larger queue size.

I_MPI_DAPL_UD_CONN_EVD_SIZE

Define the event queue size of the DAPL UD event dispatcher for connections.

Syntax

I_MPI_DAPL_UD_CONN_EVD_SIZE=<size>

Arguments

<size> Define the length of the event queue

> 0 The default value is 2*number of processes + 32

Description

Set this environment variable to define the event queue size of the DAPL event dispatcher that

handles connection related events. If this environment variable is set, the minimum value between

<size> and the value obtained from the provider is used as the size of the event queue. The

Intel® MPI Library Reference Manual for Linux* OS

150

provider is required to supply a queue size that is at least equal to the calculated value, but it can
also provide a larger queue size.

I_MPI_DAPL_UD_RECV_EVD_SIZE

Define the event queue size of the DAPL UD event dispatcher for receiving data transfer operations.

Syntax

I_MPI_DAPL_UD_RECV_EVD_SIZE=<size>

Arguments

<size> Define the length of the event queue

> 0 The default value depends on the number UD and ACK buffers

Description

Set this environment variable to define the event queue size of the DAPL event dispatcher that

handles completions of receiving DAPL UD data transfer operations (DTO). If this environment

variable is set, the minimum value between <size> and the value obtained from the provider is

used as the size of the event queue. The provider is required to supply a queue size that is at least

equal to the calculated value, but it can also provide a larger queue size.

I_MPI_DAPL_UD_RNDV_MAX_BLOCK_LEN

Define maximum size of block that is passed at one iteration of DAPL UD direct-copy protocol.

Syntax

I_MPI_DAPL_UD_RNDV_MAX_BLOCK_LEN=<nbytes>

Arguments

<arg>
Define maximum size of block that is passed at one iteration of

DAPL UD direct-copy protocol

> 0 The default value is 1,048,576

Set this environment variable to define the maximum size of memory block that is passed at one

iteration of DAPL UD direct-copy protocol. If the size of message in direct-copy protocol is greater
than given value, the message will be divided in several blocks and passed in several operations.

I_MPI_DAPL_UD_RNDV_BUFFER_ALIGNMENT

Define the alignment of the sending buffer for the DAPL UD direct-copy transfers.

Syntax

I_MPI_DAPL_UD_RNDV_BUFFER_ALIGNMENT=<arg>

Arguments

<arg> Define the alignment of the sending buffer

151

> 0 and a power of 2 The default value is 16

Set this environment variable to define the alignment of the sending buffer for DAPL direct-copy

transfers. When a buffer specified in a DAPL operation is aligned to an optimal value, this may
increase data transfer bandwidth.

I_MPI_DAPL_UD_RNDV_COPY_ALIGNMENT_THRESHOLD

Define threshold where alignment is applied to send buffer for the DAPL UD direct-copy transfers.

Syntax

I_MPI_DAPL_UD_RNDV_COPY_ALIGNMENT_THRESHOLD=<nbytes>

Arguments

<nbytes> Define send buffer alignment threshold

> 0 and a power of 2 The default value is 32,768

Set this environment variable to define the threshold where the alignment of the sending buffer is

applied in DAPL direct-copy transfers. When a buffer specified in a DAPL operation is aligned to an
optimal value, this may increase data transfer bandwidth.

I_MPI_DAPL_UD_RNDV_DYNAMIC_CONNECTION

Control the algorithm of dynamic connection establishment for DAPL UD endpoints used in the

direct copy protocol.

Syntax

I_MPI_DAPL_UD_RNDV_DYNAMIC_CONNECTION=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Turns on the dynamic connection mode. This is the default value

disable | no | off | 0 Turns off the dynamic connections mode

Set this variable to control the dynamic connection establishment of DAPL UD endpoints used in

the direct copy protocol.

If you disable the dynamic connection mode, all possible connections are established during the

MPI startup phase.

If you enable the mode, the connection is established when an application calls the MPI function

to pass the data from one process to another and invokes the communication between the two
processes.

Intel® MPI Library Reference Manual for Linux* OS

152

NOTE:

For the RNDV dynamic connection mode, the size of the messages passed in the data is larger

than the value you set in the I_MPI_DAPL_UD_DIRECT_COPY_THRESHOLD environment variable.

I_MPI_DAPL_UD_EAGER_DYNAMIC_CONNECTION

Control the algorithm of the dynamic connection establishment for DAPL UD endpoints used in

eager protocol.

Syntax

I_MPI_DAPL_UD_EAGER_DYNAMIC_CONNECTION=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1

Turn on the dynamic connection mode. If the number of

processes is over 64, this is the default value

disable | no | off | 0 Turn off the dynamic connections mode

Set this variable to control the dynamic connection establishment of DAPL UD endpoints involved

in eager protocol. Eager protocol is used to transfer messages through internal pre-registered
buffers.

 If you disable this mode, all possible connections are established during MPI startup phase.

If you enable this mode, the connection is established when an application calls the MPI function to

pass the data from one process to another and invokes the communication between the two
processes.

NOTE:

For the eager dynamic connection mode, the size of the messages passed in the data is shorter

than or equal to the value you set in the

I_MPI_DAPL_UD_DIRECT_COPY_THRESHOLD environment variable.

I_MPI_DAPL_UD_DESIRED_STATIC_CONNECTIONS_NUM

Define the number of processes that establish DAPL static connections at the same time.

Syntax

I_MPI_DAPL_UD_DESIRED_STATIC_CONNECTIONS_NUM=<num_procesess>

Arguments

<num_procesess>
Define the number of processes that establish DAPL UD static

connections at the same time

> 0 The default value is equal to 200

153

Description

Set this environment variable to control the algorithm of DAPL UD static connections

establishment.

If the number of processes in an MPI job is less than or equal to <num_procesess>, all MPI

processes establish the static connections simultaneously. Otherwise, the processes are distributed
into several groups. The number of processes in each group is calculated to be close to

<num_procesess>. Then static connections are established in several iterations, including

intergroup connection setup.

I_MPI_DAPL_UD_RDMA_MIXED

Control the use of the DAPL UD/RDMA mixed communication.

Syntax

I_MPI_DAPL_UD_RDMA_MIXED =<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Turn on the use of DAPL UD/RDMA mixed communication

disable | no | off | 0
Turn off the use of DAPL UD/RDMA mixed communication. This is

the default value

Description

Set this environment variable to enable the DAPL UD/RDMA mixed mode for transferring data. In

the DAPL UD/RDMA mixed mode, small messages are passed through the UD transport and large

messages are passed through the RDMA transport. If you set the I_MPI_DAPL_UD_RDMA_MIXED

environment variable and a certain DAPL provider attribute indicates that UD IB extension is
supported, the DAPL UD/RDMA mixed mode is enabled.

The following set of I_MPI_DAPL_UD* environment variables also controls the DAPL UD/RDMA

mixed mode:

 I_MPI_DAPL_UD_PROVIDER

 I_MPI_DAPL_UD_EAGER_DYNAMIC_CONNECTION

 I_MPI_DAPL_UD_RNDV_DYNAMIC_CONNECTION

 I_MPI_DAPL_UD_DIRECT_COPY_THRESHOLD

 I_MPI_DAPL_UD_RECV_BUFFER_NUM

 I_MPI_DAPL_UD_SEND_BUFFER_NUM

 I_MPI_DAPL_UD_NUMBER_CREDIT_UPDATE

 I_MPI_DAPL_UD_ACK_SEND_POOL_SIZE

 I_MPI_DAPL_UD_ACK_RECV_POOL_SIZE

 I_MPI_DAPL_UD_RESENT_TIMEOUT

Intel® MPI Library Reference Manual for Linux* OS

154

 I_MPI_DAPL_UD_MAX_MSG_SIZE

 I_MPI_DAPL_UD_SEND_BUFFER_SIZE

 I_MPI_DAPL_UD_REQ_EVD_SIZE

 I_MPI_DAPL_UD_REQUEST_QUEUE_SIZE

 I_MPI_DAPL_UD_MULTIPLE_EAGER_SEND

 I_MPI_DAPL_UD_NA_SBUF_LIMIT

 I_MPI_DAPL_UD_RECV_EVD_SIZE

 I_MPI_DAPL_UD_CONNECTION_TIMEOUT

 I_MPI_DAPL_UD_PORT

 I_MPI_DAPL_UD_CREATE_CONN_QUAL,

 I_MPI_DAPL_UD_FINALIZE_RETRY_COUNT

 I_MPI_DAPL_UD_FINALIZE_TIMEOUT

 I_MPI_DAPL_UD_TRANSLATION_CACHE

 I_MPI_DAPL_UD_TRANSLATION_CACHE_AVL_TREE

 I_MPI_DAPL_UD_TRANSLATION_CACHE_MAX_ENTRY_NUM

 I_MPI_DAPL_UD_TRANSLATION_CACHE_MAX_MEMORY_SIZE

 I_MPI_DAPL_UD_PKT_LOSS_OPTIMIZATION

 I_MPI_DAPL_UD_DFACTOR

 I_MPI_DAPL_UD_DESIRED_STATIC_CONNECTIONS_NUM

 I_MPI_DAPL_UD_CONN_EVD_SIZE

 I_MPI_DAPL_UD_RNDV_BUFFER_ALIGNMENT

 I_MPI_DAPL_UD_RNDV_COPY_ALIGNMENT_THRESHOLD

The following set of environment variables is specific for DAPL UD/RDMA mixed mode:

 I_MPI_DAPL_UD_MAX_RDMA_SIZE

 I_MPI_DAPL_UD_MAX_RDMA_DTOS

I_MPI_DAPL_UD_MAX_RDMA_SIZE

Control the maximum message size that can be sent though the RDMA for DAPL UD/RDMA mixed

mode.

155

Syntax

I_MPI_DAPL_UD_MAX_RDMA_SIZE =<nbytes>

Arguments

<nbytes>
Define the maximum message size that can be sent through RDMA

without fragmentation

> 0

The default <nbytes> value is 4 MB

Description

Set this environment variable to define the maximum message size that can be sent though RDMA

protocol for the DAPL UD/RDMA mixed mode. If the message size is greater than this value, this

message is divided into several fragments and is sent by several RDMA operations.

I_MPI_DAPL_UD_MAX_RDMA_DTOS

Control the maximum number of uncompleted RDMA operations per connection for the DAPL

UD/RDMA mixed mode.

Syntax

I_MPI_DAPL_UD_MAX_RDMA_DTOS=<arg>

Arguments

<arg> Define the maximum number of RDMA operations per connection

> 0 The default <arg> value is 8

Description

Set this environment variable to define the maximum number of RDMA operations per connection

for the DAPL UD/RDMA mixed mode.

3.3.5. TCP-capable Network Fabrics Control

I_MPI_TCP_NETMASK

(I_MPI_NETMASK)

Choose the network interface for MPI communication over TCP-capable network fabrics.

Syntax

I_MPI_TCP_NETMASK=<arg>

Intel® MPI Library Reference Manual for Linux* OS

156

Arguments

<arg> Define the network interface (string parameter)

<interface_mnemonic> Mnemonic of the network interface: ib or eth

ib Use IPoIB* network interface

eth Use Ethernet network interface. This is the default value

<interface_name> Name of the network interface

Usually the UNIX* driver name followed by the unit number

<network_address> Network address. Trailing zero bits imply a netmask

<network_address/

<netmask>

Network address. The <netmask> value specifies the netmask

length

<list of interfaces> A colon separated list of network addresses and interface names

Description

Set this environment variable to choose the network interface for MPI communication over TCP-

capable network fabrics. If you specify a list of interfaces, the first available interface on the node
is used for communication.

Examples

 Use the following setting to select the IP over InfiniBand* (IPoIB) fabric:
I_MPI_TCP_NETMASK=ib

 Use the following setting to select the specified network interface for socket communications:

 I_MPI_TCP_NETMASK=ib0

 Use the following setting to select the specified network for socket communications. This

setting implies the 255.255.0.0 netmask:

I_MPI_TCP_NETMASK=192.169.0.0

 Use the following setting to select the specified network for socket communications with
netmask set explicitly:

I_MPI_TCP_NETMASK=192.169.0.0/24

 Use the following setting to select the specified network interfaces for socket communications:
I_MPI_TCP_NETMASK=192.169.0.5/24:ib0:192.169.0.0

I_MPI_TCP_BUFFER_SIZE

Change the size of the TCP socket buffers.

Syntax

I_MPI_TCP_BUFFER_SIZE=<nbytes>

157

Arguments

<nbytes> Define the size of the TCP socket buffers

> 0 The default <nbytes> value is equal to default value of the TCP

socket buffer size on your Linux system.

Description

Set this environment variable to manually define the size of the TCP socket buffers. The TCP

socket buffer size is restricted by the existing TCP settings on your Linux system.

Use the I_MPI_TCP_BUFFER_SIZE environment variable for tuning your application performance

for a given number of processes.

NOTE:

TCP socket buffers of a large size can require more memory for an application with large

number of processes. Alternatively, TCP socket buffers of a small size can considerably
decrease the bandwidth of each socket connection especially for 10 Gigabit Ethernet and IPoIB

(see I_MPI_TCP_NETMASK for details).

I_MPI_TCP_POLLING_MODE

Set this environment variable to define a polling mode.

Syntax

I_MPI_TCP_POLLING_MODE=<mode>

Arguments

<mode> Specify the polling mode

poll The polling mode based on the poll() function. This is the default

value

epoll[:edge] The polling mode based on the epoll() function as an edge-

triggered interface

epoll:level The polling mode based on the epoll() function as a level-

triggered interface

Set this environment variable to select the polling mode for the tcp fabric.

Use the I_MPI_TCP_POLLING_MODE environment variable for tuning application performance. You

can choose the best polling mode on an experimental basis. The best mode depends on the

specific application and on the number of processes. The epoll polling mode is a preferable mode

in the following situations:

 for large number of processes

 for APP client-server type

 for MPI_ANY_SOURCE tag matching

Intel® MPI Library Reference Manual for Linux* OS

158

3.3.6. TMI-capable Network Fabrics Control

I_MPI_TMI_LIBRARY

Select the TMI library to be used.

Syntax

I_MPI_TMI_LIBRARY=<library>

Arguments

<library> Specify a TMI library to be used instead of the default libtmi.so

Description

Set this environment variable to select a specific TMI library. Specify the full path to the TMI

library if the library does not locate in the dynamic loader search path.

I_MPI_TMI_PROVIDER

Define the name of the TMI provider to load.

Syntax

I_MPI_TMI_PROVIDER=<name>

Arguments

<name> The name of the TMI provider to load

Description

Set this environment variable to define the name of the TMI provider to load. The name must also

be defined in the tmi.conf configuration file.

3.3.7. OFA*-capable Network Fabrics Control

I_MPI_OFA_NUM_ADAPTERS

Set the number of connection adapters.

Syntax

I_MPI_OFA_NUM_ADAPTERS=<arg>

Arguments

<arg> Define the maximum number of connection adapters used

>0 Use the specified number of adapters. The default value is 1

159

Description

Set the number of the adapters that are used. If the number is greater than the available number

of adapters, all the available adaptors are used.

I_MPI_OFA_ADAPTER_NAME

Set the name of adapter that is used.

Syntax

I_MPI_OFA_ADAPTER_NAME=<arg>

Arguments

<arg> Define the name of adapter

Name Use the specified adapter. By default, any adapter can be used

Description

Set the name of adaptor to be used. If the adapter with specified name does not exist, the library

returns an error. This has effect only if I_MPI_OFA_NUM_ADAPTERS=1.

I_MPI_OFA_NUM_PORTS

Set the number of used ports on each adapter.

Syntax

I_MPI_OFA_NUM_PORTS=<arg>

Arguments

<arg> Define the number of ports that are used on each adapter

> 0 Use the specified number of ports. The default value is 1

Description

Set the number of used ports on each adaptor. If the number is greater than the available number

of ports, all the available ports are used.

I_MPI_OFA_NUM_RDMA_CONNECTIONS

Set the maximum number of connections that can use the rdma exchange protocol.

Syntax

I_MPI_OFA_NUM_RDMA_CONNECTIONS=<num_conn>

Arguments

<num_conn> Define the maximum number of connections that can use the rdma

exchange protocol

Intel® MPI Library Reference Manual for Linux* OS

160

>= 0 Create the specified number of connections that use the rdma

exchange protocol. All other processes use the send/ receive
exchange protocol

-1 Create log2(number of processes) rdma connections

>= number of processes Create rdma connections for all processes. This is the default value

Description

There are two exchange protocols between two processes: send/receive and rdma. This

environment variable specifies the maximum amount of connections that use rdma protocol.

RDMA protocol is faster but requires more resources. For a large application, you can limit the

number of connections that use the rdma protocol so that only processes that actively exchange

data use the rdma protocol.

I_MPI_OFA_SWITCHING_TO_RDMA

Set the number of messages that a process should receive before switching this connection to

RDMA exchange protocol.

Syntax

I_MPI_OFA_SWITCHING_TO_RDMA=<number>

Arguments

<number> Define the number of messages that the process receives before

switching to use the rdma protocol

>= 0 If this process receives <number> of messages, start using the

rdma protocol

Description

Count the number of messages received from the specific process. The connection achieved the

specified number tries to switch to rdma protocol for exchanging with that process. The connection

will not switch to rdma protocol if the maximum number of connections that use the rdma

exchange protocol defined in I_MPI_OFA_NUM_RDMA_CONNECTIONS has been reached.

I_MPI_OFA_RAIL_SCHEDULER

Set the method of choosing rails for short messages.

Syntax

I_MPI_OFA_RAIL_SCHEDULER=<arg>

Arguments

<arg> Mode selector

ROUND_ROBIN Next time use next rail

161

FIRST_RAIL Always use the first rail for short messages

PROCESS_BIND Always use the rail specific for process

Description

Set the method of choosing rails for short messages. The algorithms are selected according to the

following scheme:

 In the ROUND_ROBIN mode, the first message is sent using the first rail; the next message is

sent using the second rail, and so on.

 In the FIRST_RAIL mode, the first rail is always used for short messages.

 In the PROCESS_BIND mode, the process with the smallest rank uses the first rail, and the

next uses the second rail.

I_MPI_OFA_TRANSLATION_CACHE

Turn on/off the memory registration cache.

Syntax

I_MPI_OFA_TRANSLATION_CACHE=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Turn on the memory registration cache. This is the default

disable | no | off | 0 Turn off the memory registration cache

Description

Set this environment variable to turn on/off the memory registration cache.

The cache substantially increases performance, but may lead to correctness issues in certain

situations. See product Release Notes for further details.

I_MPI_OFA_TRANSLATION_CACHE_AVL_TREE

Enable/disable the AVL tree* based implementation of the RDMA translation cache.

Syntax

I_MPI_OFA_TRANSLATION_CACHE_AVL_TREE=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Turn on the AVL tree based RDMA translation cache

disable | no | off | 0 Turn off the AVL tree based RDMA translation cache. This is the

Intel® MPI Library Reference Manual for Linux* OS

162

default value

Description

Set this environment variable to enable the AVL tree based implementation of RDMA translation

cache in the OFA path. When the search in RDMA translation cache handles over 10,000 elements,
the AVL tree based RDMA translation cache is faster than the default implementation.

I_MPI_OFA_USE_XRC

Control the use of extensible reliable connection (XRC) capability.

Syntax

I_MPI_OFA_USE_XRC=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Turn on XRC.

disable | no | off | 0 Turn off XRC. This is the default

Description

Set this environment variable to control the use of XRC when you are using a large cluster with

several thousands of nodes.

I_MPI_OFA_DYNAMIC_QPS

Control the library to create queue pairs (QPs) dynamically.

Syntax

I_MPI_OFA_DYNAMIC_QPS=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Create QPs dynamically. This is the default value if the number of

processes is larger than or equal 2,000

disable | no | off | 0 Create all QPs during the initial stage. This is the default value if

the number of processes is less than 2,000

Description

Set this environment variable to turn on dynamic creation of QPs.

I_MPI_OFA_PACKET_SIZE

Set the size of the packet used for sending.

163

Syntax

I_MPI_OFA_PACKET_SIZE=<arg>

Arguments

<arg> Define the size of packet in bytes

> 0 Use the specified packet size. The default value is 8192

Description

Set the packet size in bytes. If the number is negative, the size is set to 8.

I_MPI_OFA_LIBRARY

Set the name of the used OFA library.

Syntax

I_MPI_OFA_LIBRARY=<arg>

Arguments

<arg> Define the name of the OFA library

Name Use the specified library. By default, the name is libibverbs.so

Description

Set the name of the InfiniBand* (IB*) library. If the library with the specified name does not exist,

an error is returned.

I_MPI_OFA_NONSWITCH_CONF

Define the nonstandard template for port connections.

Syntax

I_MPI_OFA_NONSWITCH_CONF=<arg>

Arguments

<arg> Define the template for port connections

Name Use the specified template

Description

The nodes in clusters are normally connected so that porti of a node can access porti of all other

nodes. Use this environment variable if ports are not connected in this way. The following example

is the template format:

host1@port11#port12#...#host2@port21#port22....

Porti
j defines the port used to send from hosti to hostj

Intel® MPI Library Reference Manual for Linux* OS

164

For example:

node1@1#1#2#node2@2#1#1#node3@1#2#1#

This sample specifies the following configuration:

 Port1 of node1 connected to port2 of node2

 Port2 of node1 connected to port1 of node3

 Port1 of node2 connected to port2 of node3

 Port2 of node2 connected to port1 of node2

 Port1 of node3 connected to port2 of node1

 Port2 of node3 connected to port1 of node2

Port1 is always used to communicate with itself (loopback).

3.3.8. Failover Support in the OFA* Device

The Intel® MPI Library recognizes the following events to detect hardware issues:

 IBV_EVENT_QP_FATAL Error occurred on a QP and it transitioned to error state

 IBV_EVENT_QP_REQ_ERR Invalid request local work queue error

 IBV_EVENT_QP_ACCESS_ERR Local access violation error

 IBV_EVENT_PATH_MIG_ERR A connection failed to migrate to the alternate path

 IBV_EVENT_CQ_ERR CQ is in error (CQ overrun)

 IBV_EVENT_SRQ_ERR Error occurred on an SRQ

 IBV_EVENT_PORT_ERR Link became unavailable on a port

 IBV_EVENT_DEVICE_FATAL CA is in FATAL state

Intel® MPI Library stops using a port or the whole adapter for communications if one of these

issues is detected. The communications continue through an available port or adapter, if the
application is running in multi-rail mode. The application is aborted if no healthy ports/adapters
are available.

Intel® MPI Library also recognizes the following event

 IBV_EVENT_PORT_ACTIVE Link became active on a port

The event indicates that the port can be used again and is enabled for communications.

3.4. Collective Operation Control

Each collective operation in the Intel® MPI Library supports a number of communication

algorithms. In addition to highly optimized default settings, the library provides two ways to

165

control the algorithm selection explicitly: the novel I_MPI_ADJUST environment variable family

and the deprecated I_MPI_MSG environment variable family. They are described in the following

sections.

These environment variables are available for both Intel® and non-Intel microprocessors, but they

may perform additional optimizations for Intel microprocessors than they perform for non-Intel
microprocessors.

3.4.1. I_MPI_ADJUST Family

I_MPI_ADJUST_<opname>

Control collective operation algorithm selection.

Syntax

I_MPI_ADJUST_<opname>=<algid>[:<conditions>][;<algid>:<conditions>[...]]

Arguments

<algid> Algorithm identifier

>= 0 The default value of zero selects the reasonable settings

<conditions> A comma separated list of conditions. An empty list selects all

message sizes and process combinations

<l> Messages of size <l>

<l>-<m> Messages of size from <l> to <m>, inclusive

<l>@<p> Messages of size <l> and number of processes <p>

<l>-<m>@<p>-<q> Messages of size from <l> to <m> and number of processes from

<p> to <q>, inclusive

Description

Set this environment variable to select the desired algorithm(s) for the collective operation

<opname> under particular conditions. Each collective operation has its own environment variable

and algorithms. See below.

Table 3.5-1 Environment Variables, Collective Operations, and Algorithms

Environment Variable Collective Operation Algorithms

I_MPI_ADJUST_ALLGATHER MPI_Allgather 1. Recursive doubling algorithm

2. Bruck's algorithm

3. Ring algorithm

4. Topology aware Gatherv +

Intel® MPI Library Reference Manual for Linux* OS

166

Bcast algorithm

I_MPI_ADJUST_ALLGATHERV MPI_Allgatherv 1. Recursive doubling algorithm

2. Bruck's algorithm

3. Ring algorithm

4. Topology aware Gatherv +

Bcast algorithm

I_MPI_ADJUST_ALLREDUCE MPI_Allreduce 1. Recursive doubling algorithm

2. Rabenseifner's algorithm

3. Reduce + Bcast algorithm

4. Topology aware Reduce +

Bcast algorithm

5. Binomial gather + scatter

algorithm

6. Topology aware binominal

gather + scatter algorithm

7. Shumilin's ring algorithm

8. Ring algorithm

I_MPI_ADJUST_ALLTOALL MPI_Alltoall 1. Bruck's algorithm

2. Isend/Irecv + waitall algorithm

3. Pair wise exchange algorithm

4. Plum's algorithm

I_MPI_ADJUST_ALLTOALLV MPI_Alltoallv 1. Isend/Irecv + waitall algorithm

2. Plum's algorithm

I_MPI_ADJUST_ALLTOALLW MPI_Alltoallw Isend/Irecv + waitall algorithm

I_MPI_ADJUST_BARRIER MPI_Barrier 1. Dissemination algorithm

2. Recursive doubling algorithm

3. Topology aware dissemination

algorithm

167

4. Topology aware recursive

doubling algorithm

5. Binominal gather + scatter

algorithm

6. Topology aware binominal

gather + scatter algorithm

I_MPI_ADJUST_BCAST MPI_Bcast 1. Binomial algorithm

2. Recursive doubling algorithm

3. Ring algorithm

4. Topology aware binomial

algorithm

5. Topology aware recursive

doubling algorithm

6. Topology aware ring algorithm

7. Shumilin's bcast algorithm

I_MPI_ADJUST_EXSCAN MPI_Exscan 1. Partial results gathering

algorithm

2. Partial results gathering

regarding algorithm layout of
processes

I_MPI_ADJUST_GATHER MPI_Gather 1. Binomial algorithm

2. Topology aware binomial

algorithm

3. Shumilin's algorithm

I_MPI_ADJUST_GATHERV MPI_Gatherv 1. Linear algorithm

2. Topology aware linear

algorithm

I_MPI_ADJUST_REDUCE_SCATTER MPI_Reduce_scatter 1. Recursive having algorithm

2. Pair wise exchange algorithm

3. Recursive doubling algorithm

Intel® MPI Library Reference Manual for Linux* OS

168

4. Reduce + Scatterv algorithm

5. Topology aware Reduce +

Scatterv algorithm

I_MPI_ADJUST_REDUCE MPI_Reduce 1. Shumilin's algorithm

2. Binomial algorithm

3. Topology aware Shumilin's

algorithm

4. Topology aware binomial

algorithm

5. Rabenseifner's algorithm

6. Topology aware Rabenseifner's

algorithm

I_MPI_ADJUST_SCAN MPI_Scan 1. Partial results gathering

algorithm

2. Topology aware partial results

gathering algorithm

I_MPI_ADJUST_SCATTER MPI_Scatter 1. Binomial algorithm

2. Topology aware binomial

algorithm

3. Shumilin's algorithm

I_MPI_ADJUST_SCATTERV MPI_Scatterv 1. Linear algorithm

2. Topology aware linear

algorithm

The message size calculation rules for the collective operations are described in the table below. In

the following table, "n/a" means that the corresponding interval <l>-<m> should be omitted.

Table 3.5-2 Message Collective Functions

Collective Function Message Size Formula

MPI_Allgather recv_count*recv_type_size

MPI_Allgatherv total_recv_count*recv_type_size

169

MPI_Allreduce count*type_size

MPI_Alltoall send_count*send_type_size

MPI_Alltoallv n/a

MPI_Alltoallw n/a

MPI_Barrier n/a

MPI_Bcast count*type_size

MPI_Exscan count*type_size

MPI_Gather recv_count*recv_type_size if MPI_IN_PLACE is used,

otherwise send_count*send_type_size

MPI_Gatherv n/a

MPI_Reduce_scatter total_recv_count*type_size

MPI_Reduce count*type_size

MPI_Scan count*type_size

MPI_Scatter send_count*send_type_size if MPI_IN_PLACE is used,

otherwise recv_count*recv_type_size

MPI_Scatterv n/a

Examples

Use the following settings to select the second algorithm for MPI_Reduce operation:

I_MPI_ADJUST_REDUCE=2

Use the following settings to define the algorithms for MPI_Reduce_scatter operation:

I_MPI_ADJUST_REDUCE_SCATTER=4:0-100,5001-10000;1:101-3200,2:3201-5000;3

In this case. algorithm 4 is used for the message sizes between 0 and 100 bytes and from 5001

and 10000 bytes, algorithm 1 is used for the message sizes between 101 and 3200 bytes,
algorithm 2 is used for the message sizes between 3201 and 5000 bytes, and algorithm 3 is used

for all other messages.

I_MPI_ADJUST_REDUCE_SEGMENT

Syntax

I_MPI_ADJUST_REDUCE_SEGMENT=<block_size>|<algid>:<block_size>[,<algid>:<block_s

ize>[...]]

Arguments

<algid> Algorithm identifier

Intel® MPI Library Reference Manual for Linux* OS

170

1 Shumilin’s algorithm

3 Topology aware Shumilin’s algorithm

<block_size> Size in bytes of a message segment

> 0 The default value is 14000

Description:

Set an internal block size to control MPI_Reduce message segmentation for the specified algorithm.

If the <algid> value is not set, the <block_size> value is applied for all the algorithms, where it

is relevant.

NOTE:

This environment variable is relevant for Shumilin’s and topology aware Shumilin’s algorithms

only (algorithm N1 and algorithm N3 correspondingly).

3.4.2. I_MPI_MSG Family

These environment variables are deprecated and supported mostly for backward compatibility. Use

the I_MPI_ADJUST environment variable family whenever possible.

I_MPI_FAST_COLLECTIVES

Control the default library behavior during selection of the most appropriate collective algorithm.

Syntax

I_MPI_FAST_COLLECTIVES=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Fast collective algorithms are used. This is the default value

disable | no | off | 0 Slower and safer collective algorithms are used

Description

The Intel® MPI Library uses advanced collective algorithms designed for better application

performance by default. The implementation makes the following assumptions:

 It is safe to utilize the flexibility of the MPI standard regarding the order of execution of the

collective operations to take advantage of the process layout and other opportunities.

 There is enough memory available for allocating additional internal buffers.

Set the I_MPI_FAST_COLLECTIVES environment variable to disable if you need to obtain results

that do not depend on the physical process layout or other factors.

171

NOTE:

Some optimizations controlled by this environment variable are of an experimental nature. In

case of failure, turn off the collective optimizations and repeat the run.

I_MPI_BCAST_NUM_PROCS

Control MPI_Bcast algorithm thresholds.

Syntax

I_MPI_BCAST_NUM_PROCS=<nproc>

Arguments

<nproc> Define the number of processes threshold for choosing the

MPI_Bcast algorithm

> 0 The default value is 8

I_MPI_BCAST_MSG

Control MPI_Bcast algorithm thresholds.

Syntax

I_MPI_BCAST_MSG=<nbytes1,nbytes2>

Arguments

<nbytes1,nbytes2> Define the message size threshold range (in bytes) for choosing

the MPI_Bcast algorithm

> 0

nbytes2 >= nbytes1
The default pair of values is 12288,524288

Description

Set these environment variables to control the selection of the three possible MPI_Bcast

algorithms according to the following scheme (See Table 3.5-1 for algorithm descriptions):

The first algorithm is selected if the message size is less than <nbytes1>, or the number of

processes in the operation is less than <nproc>.

The second algorithm is selected if the message size is greater than or equal to <nbytes1> and

less than <nbytes2>, and the number of processes in the operation is a power of two.

If none of the above conditions is satisfied, the third algorithm is selected.

I_MPI_ALLTOALL_NUM_PROCS

Control MPI_Alltoall algorithm thresholds.

Intel® MPI Library Reference Manual for Linux* OS

172

Syntax

I_MPI_ALLTOALL_NUM_PROCS=<nproc>

Arguments

<nproc> Define the number of processes threshold for choosing the

MPI_Alltoall algorithm

> 0 The default value is 8

I_MPI_ALLTOALL_MSG

Control MPI_Alltoall algorithm thresholds.

Syntax

I_MPI_ALLTOALL_MSG=<nbytes1,nbytes2>

Arguments

<nbytes1,nbytes2> Defines the message size threshold range (in bytes) for choosing

the MPI_Alltoall algorithm

> 0

nbytes2 >= nbytes1
The default pair of values is 256,32768

Description

Set these environment variables to control the selection of the three possible MPI_Alltoall

algorithms according to the following scheme (See Table 3.5-1 for algorithm descriptions):

The first algorithm is selected if the message size is greater than or equal to <nbytes1>, and the

number of processes in the operation is not less than <nproc>.

The second algorithm is selected if the message size is greater than <nbytes1> and less than or

equal to <nbytes2>, or if the message size is less than <nbytes2> and the number of processes

in the operation is less than <nproc>.

If none of the above conditions is satisfied, the third algorithm is selected.

I_MPI_ALLGATHER_MSG

Control MPI_Allgather algorithm thresholds.

Syntax

I_MPI_ALLGATHER_MSG=<nbytes1,nbytes2>

Arguments

<nbytes1,nbytes2> Define the message size threshold range (in bytes) for choosing

the MPI_Allgather algorithm

> 0 The default pair of values is 81920,524288

173

nbytes2 >= nbytes1

Description

Set this environment variable to control the selection of the three possible MPI_Allgather

algorithms according to the following scheme (See Table 3.5-1 for algorithm descriptions):

The first algorithm is selected if the message size is less than <nbytes2> and the number of

processes in the operation is a power of two.

The second algorithm is selected if the message size is less than <nbytes1> and number of

processes in the operation is not a power of two.

If none of the above conditions is satisfied, the third algorithm is selected.

I_MPI_ALLREDUCE_MSG

Control MPI_Allreduce algorithm thresholds.

Syntax

I_MPI_ALLREDUCE_MSG=<nbytes>

Arguments

<nbytes> Define the message size threshold (in bytes) for choosing the

MPI_Allreduce algorithm

> 0 The default value is 2048

Description

Set this environment variable to control the selection of the two possible MPI_Allreduce

algorithms according to the following scheme (See Table 3.5-1 for algorithm descriptions):

The first algorithm is selected if the message size is less than or equal <nbytes>, or the reduction

operation is user-defined, or the count argument is less than the nearest power of two less than or

equal to the number of processes.

If the above condition is not satisfied, the second algorithm is selected.

I_MPI_REDSCAT_MSG

Control the MPI_Reduce_scatter algorithm thresholds.

Syntax

I_MPI_REDSCAT_MSG=<nbytes1,nbytes2>

Arguments

<nbytes> Define the message size threshold range (in bytes) for choosing

the MPI_Reduce_scatter algorithm

> 0 The default pair of values is 512,524288

Intel® MPI Library Reference Manual for Linux* OS

174

Description

Set this environment variable to control the selection of the three possible MPI_Reduce_scatter

algorithms according to the following scheme (See Table 3.5-1 for algorithm descriptions):

The first algorithm is selected if the reduction operation is commutative and the message size

is less than <nbytes2>.

The second algorithm is selected if the reduction operation is commutative and the message size is

greater than or equal to <nbytes2>, or if the reduction operation is not commutative and the

message size is greater than or equal to <nbytes1>.

If none of the above conditions is satisfied, the third algorithm is selected.

I_MPI_SCATTER_MSG

Control MPI_Scatter algorithm thresholds.

Syntax

I_MPI_SCATTER_MSG=<nbytes>

Arguments

<nbytes> Define the buffer size threshold range (in bytes) for choosing the

MPI_Scatter algorithm

> 0 The default value is 2048

Description

Set this environment variable to control the selection of the two possible MPI_Scatter algorithms

according to the following scheme (See Table 3.5-1 for algorithm descriptions):

The first algorithm is selected on the intercommunicators if the message size is greater than

<nbytes>.

If the above condition is not satisfied, the second algorithm is selected.

I_MPI_GATHER_MSG

Control MPI_Gather algorithm thresholds.

Syntax

I_MPI_GATHER_MSG=<nbytes>

Arguments

<nbytes> Define the buffer size threshold range (in bytes) for choosing the

MPI_Gather algorithm

> 0 The default value is 2048

175

Description

Set this environment variable to control the selection of the two possible MPI_Gather algorithms

according to the following scheme (See Table 3.5-1 for algorithm descriptions):

The first algorithm is selected on the intercommunicators if the message size is greater than

<nbytes>.

If the above condition is not satisfied, the second algorithm is selected.

3.5. Miscellaneous

This topic provides the following information:

 Timer Control

 Compatibility Control

 Dynamic Process Support

 Fault Tolerance

 Statistics Gathering Mode

 ILP64 Support

 Unified Memory Management

 File System Support

 Multi-threaded memcpy Support

3.5.1. Timer Control

I_MPI_TIMER_KIND

Select the timer used by the MPI_Wtime and MPI_Wtick calls.

Syntax

I_MPI_TIMER_KIND=<timername>

Arguments

<timername> Define the timer type

gettimeofday If this setting is chosen, the MPI_Wtime and MPI_Wtick functions

will work through the function gettimeofday(2). This is the

default value

rdtsc If this setting is chosen, the MPI_Wtime and MPI_Wtick functions

will use the high resolution RDTSC timer

Intel® MPI Library Reference Manual for Linux* OS

176

Description

Set this environment variable to select either the ordinary or RDTSC timer.

The resolution of the default gettimeofday(2) timer may be insufficient on certain platforms.

3.5.2. Compatibility Control

I_MPI_COMPATIBILITY

Select the runtime compatibility mode.

Syntax

I_MPI_COMPATIBILITY=<value>

Arguments

<value> Define compatibility mode

not defined Enable MPI-2.2 standard compatibility. This is the default mode

3 Enable the Intel® MPI Library 3.x compatible mode

4 Enable the Intel® MPI Library 4.0.x compatible mode

Description

Set this environment variable to choose the Intel® MPI runtime compatible mode. By default, the

library complies with the MPI-2.2 standard. If your application depends on the MPI-2.1 behavior,

set the value of the environment variable I_MPI_COMPATIBILITY to 4. If your application depends

on the pre-MPI-2.1 behavior, set the value of the environment variable I_MPI_COMPATIBILITY to

3.

3.5.3. Dynamic Process Support

The Intel® MPI Library provides support for the MPI-2 process model that allows creation and

cooperative termination of processes after an MPI application has started. It provides the
following:

 a mechanism to establish communication between the newly created processes and the

existing MPI application

 a process attachment mechanism to establish communication between two existing MPI

applications even when one of them does not spawn the other

The existing MPD ring (see mpdboot for details) is used for the placement of the spawned

processes using round robin scheduling. The first spawned process is placed after the last process

of the parent group. A specific network fabric combination is selected using the usual fabrics
selection algorithm (see I_MPI_FABRICS and I_MPI_FABRICS_LIST for details).

For example, to run a dynamic application, use the following commands:

$ mpdboot -n 4 -r ssh

177

$ mpiexec -n 1 -gwdir <path_to_executable> -genv I_MPI_FABRICS

shm:tcp <spawn_app>

In the example, the spawn_app spawns 4 dynamic processes. If the mpd.hosts contains the

following information:

host1

host2

host3

host4

The original spawning process is placed on host1, while the dynamic processes are distributed as

follows: 1 - on host2, 2 - on host3, 3 - on host4, and 4 - again on host1.

To run a client-server application, use the following commands on the intended server host:

$ mpdboot -n 1

$ mpiexec -n 1 -genv I_MPI_FABRICS shm:dapl <server_app> > <port_name>

and use the following commands on the intended client hosts:

$ mpdboot -n 1

$ mpiexec -n 1 -genv I_MPI_FABRICS shm:dapl <client_app> < <port_name>

To run a simple MPI_COMM_JOIN based application, use the following commands on the intended

server host:

$ mpdboot -n 1 -r ssh

$ mpiexec -n 1 -genv I_MPI_FABRICS shm:ofa <join_server_app> < <port_number>

$ mpiexec -n 1 -genv I_MPI_FABRICS shm:ofa <join_client_app> < <port_number>

3.5.4. Fault Tolerance

Intel® MPI Library provides extra functionality to enable fault tolerance support in the MPI

applications. The MPI standard does not define behavior of MPI implementation if one or several
processes of MPI application are abnormally aborted. By default, Intel® MPI Library aborts the

whole application if any process stops.

Set the environment variable I_MPI_FAULT_CONTINUE to on to change this behavior. For example,

$ mpiexec -env I_MPI_FAULT_CONTINUE on -n 2 ./test

An application can continue working in the case of MPI processes an issue if the issue meets the

following requirements:

 An application sets error handler MPI_ERRORS_RETURN to communicator MPI_COMM_WORLD (all

new communicators inherit error handler from it)

 An application uses master-slave model. In this case, the application is stopped only if the

master is finished or does not respond

 An application uses only point-to-point communication between a master and a number of

slaves. It does not use inter slave communication or MPI collective operations.

Intel® MPI Library Reference Manual for Linux* OS

178

 Handle a certain MPI error code on a point-to-point operation with a particular failed slave rank

for application to avoid further communication with this rank. The slave rank can be
blocking/non-blocking send, receive, probe and test,

 Any communication operation can be used on subset communicator system. If an error
appears in a collective operation, any communication inside this communicator will be

prohibited.

 Master failure means the job stops.

 Fault Tolerance functionality is not available for spawned processes.

3.5.4.1. Environment Variables

I_MPI_FAULT_CONTINUE

Turn on/off support for fault tolerant applications.

Syntax

I_MPI_FAULT_CONTINUE=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Turn on support for fault tolerant applications

disable | no | off | 0 Turn off support for fault tolerant applications. This is default

value

Description

Set this environment variable to provide support for fault tolerant applications.

3.5.4.2. Usage Model

An application sets MPI_ERRORS_RETURN error handler and checks the return code after each

communication call. If a communication call does not return MPI_SUCCESS, the destination process

should be marked unreachable and exclude communication with it. For example:

if(live_ranks[rank]) {

 mpi_err = MPI_Send(buf, count, dtype, rank, tag, MPI_COMM_WORLD);

if(mpi_err != MPI_SUCCESS) {

 live_ranks[rank] = 0;

}

}

In the case of non-blocking communications, errors can appear during wait/test operations.

179

3.5.5. Statistics Gathering Mode

This topic describes the Intel® MPI Library statistics gathering modes and how to use such

gathering facility through environment variables. This topic provides the following information:

 Native statistics format

 IPM statistics format

3.5.5.1. Native Statistics Format

The Intel® MPI Library has a built-in statistics gathering facility that collects essential performance

data without disturbing the application execution. The collected information is sent to a text file.

This section describes the environment variables used to control the built-in statistics gathering
facility, and provides example output files.

I_MPI_STATS

Control statistics collection. Expand values of I_MPI_STATS environment variable additionally to

existing values.

Syntax

I_MPI_STATS=[n-] m

Arguments

n, m Possible stats levels of the output information

1 Output the amount of data sent by each process

2 Output the number of calls and amount of transferred data

3 Output statistics combined according to the actual arguments

4 Output statistics defined by a buckets list

10 Output collective operation statistics for all communication

contexts

Description

Set this environment variable to control the amount of statistics information collected and the

output to the log file. No statistics are output by default.

NOTE:

n, m are positive integer numbers. They define the range of output information. The statistics

from level n to level m inclusive are output. If an n value is not provided, the default value is 1.

I_MPI_STATS_SCOPE

Select the subsystem(s) to collect statistics for.

Intel® MPI Library Reference Manual for Linux* OS

180

Syntax

I_MPI_STATS_SCOPE=<subsystem>[:<ops>][;<subsystem>[:<ops>][...]]

Arguments

<subsystem> Define the target subsystem(s)

all Collect statistics data for all operations. This is the default value

coll Collect statistics data for all collective operations

p2p Collect statistics data for all point-to-point operations

<ops> Define the target operations as a comma separated list

Allgather MPI_Allgather

Allgatherv MPI_Allgatherv

Allreduce MPI_Allreduce

Alltoall MPI_Alltoall

Alltoallv MPI_Alltoallv

Alltoallw MPI_Alltoallw

Barrier MPI_Barrier

Bcast MPI_Bcast

Exscan MPI_Exscan

Gather MPI_Gather

Gatherv MPI_Gatherv

Reduce_scatter MPI_Reduce_scatter

Reduce MPI_Reduce

Scan MPI_Scan

Scatter MPI_Scatter

Scatterv MPI_Scatterv

Send Standard transfers (MPI_Send, MPI_Isend, MPI_Send_init)

181

Bsend Buffered transfers (MPI_Bsend, MPI_Ibsend, MPI_Bsend_init)

Csend Point-to-point operations inside the collectives. This internal

operation serves all collectives

Rsend Ready transfers (MPI_Rsend, MPI_Irsend, MPI_Rsend_init)

Ssend Synchronous transfers (MPI_Ssend, MPI_Issend,

MPI_Ssend_init)

Description

Set this environment variable to select the target subsystem in which to collect statistics. All

collective and point-to-point operations, including the point-to-point operations performed inside
the collectives, are covered by default.

Examples

The default settings are equivalent to:

I_MPI_STATS_SCOPE=coll;p2p

Use the following settings to collect statistics for the MPI_Bcast, MPI_Reduce, and all point-

to-point operations:

I_MPI_STATS_SCOPE=p2p;coll:bcast,reduce

Use the following settings to collect statistics for the point-to-point operations inside the

collectives:

I_MPI_STATS_SCOPE=p2p:csend

I_MPI_STATS_BUCKETS

Identify a list of ranges for message sizes and communicator sizes that are used for collecting

statistics.

Syntax

I_MPI_STATS_BUCKETS=<msg>[@<proc>][,<msg>[@<proc>]]...

Arguments

<msg> Specify range of message sizes in bytes

<l> Single value of message size

<l>-<m> Range from <l> to <m>

<proc> Specify range of processes (ranks) for collective operations

<p> Single value of communicator size

<p>-<q> Range from <p> to <q>

Intel® MPI Library Reference Manual for Linux* OS

182

Description

Set the I_MPI_STATS_BUCKETS environment variable to define a set of ranges for message sizes

and communicator sizes.

Level 4 of the statistics provides profile information for these ranges.

If I_MPI_STATS_BUCKETS environment variable is not used, then level 4 statistics is not gathered.

If a range is not specified, the maximum possible range is assumed.

Examples

To specify short messages (from 0 to 1000 bytes) and long messages (from 50000 to 100000

bytes), use the following setting:

-env I_MPI_STATS_BUCKETS 0-1000,50000-100000

To specify messages that have 16 bytes in size and circulate within four process communicators,

use the following setting:

-env I_MPI_STATS_BUCKETS "16@4">

NOTE:

When the @ symbol is present, the environment variable value must be enclosed in quotes.

I_MPI_STATS_FILE

Define the statistics output file name.

Syntax

I_MPI_STATS_FILE=<name>

Arguments

<name> Define the statistics output file name

Description

Set this environment variable to define the statistics output file. By default, the stats.txt file is

created in the current directory.

The statistics data is blocked and ordered according to the process ranks in the

MPI_COMM_WORLD communicator. The timing data is presented in microseconds. For example, with

the following settings:

I_MPI_STATS=4

I_MPI_STATS_SCOPE=p2p;coll:allreduce

The statistics output for a simple program that performs only one MPI_Allreduce operation may

look as follows:

Intel(R) MPI Library Version 4.0

183

____ MPI Communication Statistics ____

Stats level: 4

P2P scope:< FULL >

Collectives scope:< Allreduce >


~~~~ Process 0 of 2 on node svlmpihead01 lifetime = 414.13 

  

Data Transfers 

Src     Dst    Amount(MB)   Transfers 

----------------------------------------- 

000 --> 000    0.000000e+00 0 

000 --> 001    7.629395e-06 2 

========================================= 

Totals         7.629395e-06 2 

  

Communication Activity 

Operation      Volume(MB)   Calls 

----------------------------------------- 

P2P 

Csend          7.629395e-06 2 

Send           0.000000e+00 0 

Bsend          0.000000e+00 0 

Rsend          0.000000e+00 0 

Ssend          0.000000e+00 0 

Collectives 

Allreduce       7.629395e-06 2 

========================================= 

  

Communication Activity by actual args 

P2P 



Intel® MPI Library Reference Manual for Linux* OS 

184 

Operation      Dst    Message size Calls 

--------------------------------------------- 

Csend 

1       1      4            2 

Collectives 

Operation      Context      Algo   Comm size    Message size Calls Cost(%) 

-----------------------------------------------------------------------------------

--  

Allreduce 

1              0             1      2            4            2       44.96 

===========================================================================

= 

  

~~~~ Process 1 of 2 on node svlmpihead01 lifetime = 306.13 


Data Transfers

Src Dst Amount(MB) Transfers

001 --> 000 7.629395e-06 2

001 --> 001 0.000000e+00 0

===

Totals 7.629395e-06 2

Communication Activity

Operation Volume(MB) Calls

P2P

Csend 7.629395e-06 2

Send 0.000000e+00 0

Bsend 0.000000e+00 0

Rsend 0.000000e+00 0

Ssend 0.000000e+00 0

185

Collectives

Allreduce 7.629395e-06 2

===

Communication Activity by actual args

P2P

Operation Dst Message size Calls

Csend

1 0 4 2

Collectives

Operation Context Comm size Message size Calls Cost(%)

--

Allreduce

1 0 2 4 2 37.93

==

____ End of stats.txt file ____

In the example above:

 All times are measured in microseconds.

 The message sizes are counted in bytes. MB means megabyte equal to 220 or 1 048 576 bytes.

 The process life time is calculated as a stretch of time between MPI_Init and MPI_Finalize.

 The Algo field indicates the number of algorithm used by this operation with listed arguments.

 The Cost field represents a particular collective operation execution time as a percentage of

the process life time.

3.5.5.2. IPM Statistics Format

The Intel® MPI Library supports integrated performance monitoring (IPM) summary format as part
of the built-in statistics gathering mechanism described above. You do not need to modify the

source code or re-link your application to collect this information.

The I_MPI_STATS_BUCKETS environment variable is not applicable to the IPM format. The

I_MPI_STATS_ACCURACYenvironment variable is available to control extra functionality.

The Intel® MPI Library also supports an optional ipm region feature. This feature requires the

source code modification. The MPI_Pcontrol function can be used.

Intel® MPI Library Reference Manual for Linux* OS

186

 Region Control

Region is a named part of the source code marked by the start/end points through the standard

MPI_Pcontrol function calls. The MPI_Pcontrol function isn’t used for the following special

permanent regions:

 Main region contains statistics information about all MPI calls from MPI_Init to

MPI_Finalize. The main region gets the "*" name in output.

 Complementary region contains statistics information not included into any named region. The

region gets the "ipm_noregion" name in output.

If named regions are not used, the main regions and the complementary regions are identical and

the complementary region is ignored.

Each region contains its own independent statistics information about MPI functions called inside

the region.

The Intel® MPI Library supports the following types of regions:

 Discontiguous (several open and close).

 Intersected.

 Covering a subset of MPI processes (part of the MPI_COMM_WORLD environment variable).

A region is opened by the MPI_Pcontrol(1, name) call and closed by the MPI_Pcontrol(-1,

name) call where name is a zero terminated string with the region name.

All open regions are closed automatically inside the MPI_Finalize environment variable.

I_MPI_STATS

Control the statistics data output format.

Syntax

I_MPI_STATS=<level>

Argument

<level> Level of statistics data

ipm Summary data throughout all regions

ipm:terse Basic summary data

Description

Set this environment variable to ipm to get the statistics output that contains region summary. Set

this environment variable to ipm:terse argument to get the brief statistics output.

I_MPI_STATS_FILE

Define the output file name.

187

Syntax

I_MPI_STATS_FILE=<name>

Argument

<name> File name for statistics data gathering

Description

Set this environment variable to change the statistics output file name from the default name of

stats.ipm.

I_MPI_STATS_SCOPE

Define a semicolon separated list of subsets of MPI functions for statistics gathering.

Syntax

I_MPI_STATS_SCOPE=<subset>[;<subset>[;…]]

Argument

<subset> Target subset

all2all Collect statistics data for all-to-all functions types

all2one Collect statistics data for all-to-one functions types

attr Collect statistics data for attribute control functions

comm Collect statistics data for communicator control functions

err Collect statistics data for error handling functions

group Collect statistics data for group support functions

init Collect statistics data for initialize/finalize functions

io Collect statistics data for input/output support function

one2all Collect statistics data for one-to-all functions types

recv Collect statistics data for receive functions

req Collect statistics data for request support functions

rma Collect statistics data for one sided communication functions

scan Collect statistics data for scan collective functions

send Collect statistics data for send functions

sendrecv Collect statistics data for send/receive functions

serv Collect statistics data for additional service functions

spawn Collect statistics data for dynamic process functions

Intel® MPI Library Reference Manual for Linux* OS

188

status Collect statistics data for status control function

sync Collect statistics data for barrier synchronization

time Collect statistics data for timing support functions

topo Collect statistics data for topology support functions

type Collect statistics data for data type support functions

Description

Use this environment variable to define a subset or subsets of MPI functions for statistics gathering

specified by the following table. A union of all subsets is used by default.
Table 4.2-1 Stats Subsets of MPI Functions

all2all

MPI_Allgather

MPI_Allgatherv

MPI_Allreduce

MPI_Alltoll

MPI_Alltoallv

MPI_Alltoallw

MPI_Reduce_scatter

all2one

MPI_Gather

MPI_Gatherv

MPI_Reduce

attr

MPI_Comm_create_keyval

MPI_Comm_delete_attr

MPI_Comm_free_keyval

MPI_Comm_get_attr

MPI_Comm_set_attr

MPI_Comm_get_name

MPI_Comm_set_name

MPI_Type_create_keyval

MPI_File_get_errhandler

MPI_File_set_errhandler

MPI_Win_call_errhandler

MPI_Win_create_errhandler

MPI_Win_get_errhandler

MPI_Win_set_errhandler

group

MPI_Group_compare

MPI_Group_difference

MPI_Group_excl

MPI_Group_free

MPI_Group_incl

MPI_Group_intersection

MPI_Group_range_excl

MPI_Group_range_incl

MPI_Group_rank

MPI_Group_size

MPI_Group_translate_ranks

MPI_Group_union

init

MPI_Init

189

MPI_Type_delete_attr

MPI_Type_free_keyval

MPI_Type_get_attr

MPI_Type_get_name

MPI_Type_set_attr

MPI_Type_set_name

MPI_Win_create_keyval

MPI_Win_delete_attr

MPI_Win_free_keyval

MPI_Win_get_attr

MPI_Win_get_name

MPI_Win_set_attr

MPI_Win_set_name

MPI_Get_processor_name

comm

MPI_Comm_compare

MPI_Comm_create

MPI_Comm_dup

MPI_Comm_free

MPI_Comm_get_name

MPI_Comm_group

MPI_Comm_rank

MPI_Comm_remote_group

MPI_Comm_remote_size

MPI_Comm_set_name

MPI_Comm_size

MPI_Comm_split

MPI_Comm_test_inter

MPI_Intercomm_create

MPI_Intercomm_merge

MPI_Init_thread

MPI_Finalize

io

MPI_File_close

MPI_File_delete

MPI_File_get_amode

MPI_File_get_atomicity

MPI_File_get_byte_offset

MPI_File_get_group

MPI_File_get_info

MPI_File_get_position

MPI_File_get_position_shared

MPI_File_get_size

MPI_File_get_type_extent

MPI_File_get_view

MPI_File_iread_at

MPI_File_iread

MPI_File_iread_shared

MPI_File_iwrite_at

MPI_File_iwrite

MPI_File_iwrite_shared

MPI_File_open

MPI_File_preallocate

MPI_File_read_all_begin

MPI_File_read_all_end

MPI_File_read_all

MPI_File_read_at_all_begin

MPI_File_read_at_all_end

MPI_File_read_at_all

MPI_File_read_at

Intel® MPI Library Reference Manual for Linux* OS

190

err

MPI_Add_error_class

MPI_Add_error_code

MPI_Add_error_string

MPI_Comm_call_errhandler

MPI_Comm_create_errhandler

MPI_Comm_get_errhandler

MPI_Comm_set_errhandler

MPI_Errhandler_free

MPI_Error_class

MPI_Error_string

MPI_File_call_errhandler

MPI_File_create_errhandler

MPI_File_write_at_all

MPI_File_write_at

MPI_File_write

MPI_File_write_ordered_begin

MPI_File_write_ordered_end

MPI_File_write_ordered

MPI_File_write_shared

MPI_Register_datarep

one2all

MPI_Bcast

MPI_Scatter

MPI_Scatterv

recv

MPI_Recv

MPI_Irecv

MPI_File_read

MPI_File_read_ordered_begin

MPI_File_read_ordered_end

MPI_File_read_ordered

MPI_File_read_shared

MPI_File_seek

MPI_File_seek_shared

MPI_File_set_atomicity

MPI_File_set_info

MPI_File_set_size

MPI_File_set_view

MPI_File_sync

MPI_File_write_all_begin

MPI_File_write_all_end

MPI_File_write_all

MPI_File_write_at_all_begin

MPI_File_write_at_all_end

MPI_Ibsend

MPI_Irsend

MPI_Issend

MPI_Send_init

MPI_Bsend_init

MPI_Rsend_init

MPI_Ssend_init

sendrecv

MPI_Sendrecv

MPI_Sendrecv_replace

serv

MPI_Alloc_mem

191

MPI_Recv_init

MPI_Probe

MPI_Iprobe

req

MPI_Start

MPI_Startall

MPI_Wait

MPI_Waitall

MPI_Waitany

MPI_Waitsome

MPI_Test

MPI_Testall

MPI_Testany

MPI_Testsome

MPI_Cancel

MPI_Grequest_start

MPI_Grequest_complete

MPI_Request_get_status

MPI_Request_free

rma

MPI_Accumulate

MPI_Get

MPI_Put

MPI_Win_complete

MPI_Win_create

MPI_Win_fence

MPI_Win_free

MPI_Win_get_group

MPI_Win_lock

MPI_Free_mem

MPI_Buffer_attach

MPI_Buffer_detach

MPI_Op_create

MPI_Op_free

spawn

MPI_Close_port

MPI_Comm_accept

MPI_Comm_connect

MPI_Comm_disconnect

MPI_Comm_get_parent

MPI_Comm_join

MPI_Comm_spawn

MPI_Comm_spawn_multiple

MPI_Lookup_name

MPI_Open_port

MPI_Publish_name

MPI_Unpublish_name

status

MPI_Get_count

MPI_Status_set_elements

MPI_Status_set_cancelled

MPI_Test_cancelled

sync

MPI_Barrier

time

Intel® MPI Library Reference Manual for Linux* OS

192

MPI_Win_post

MPI_Win_start

MPI_Win_test

MPI_Win_unlock

MPI_Win_wait

scan

MPI_Exscan

MPI_Scan

send

MPI_Send

MPI_Bsend

MPI_Rsend

MPI_Ssend

MPI_Isend

MPI_Wtick

MPI_Wtime

topo

MPI_Cart_coords

MPI_Cart_create

MPI_Cart_get

MPI_Cart_map

MPI_Cart_rank

MPI_Cart_shift

MPI_Cart_sub

MPI_Cartdim_get

MPI_Dims_create

MPI_Graph_create

MPI_Graph_get

MPI_Graph_map

MPI_Graph_neighbors

MPI_Graphdims_get

MPI_Graph_neighbors_count

MPI_Topo_test

 type

MPI_Get_address

MPI_Get_elements

MPI_Pack

MPI_Pack_external

MPI_Pack_external_size

MPI_Pack_size

MPI_Type_commit

MPI_Type_contiguous

MPI_Type_create_darray

193

MPI_Type_create_hindexed

MPI_Type_create_hvector

MPI_Type_create_indexed_block

MPI_Type_create_resized

MPI_Type_create_struct

MPI_Type_create_subarray

MPI_Type_dup

MPI_Type_free

MPI_Type_get_contents

MPI_Type_get_envelope

MPI_Type_get_extent

MPI_Type_get_true_extent

MPI_Type_indexed

MPI_Type_size

MPI_Type_vector

MPI_Unpack_external

MPI_Unpack

I_MPI_STATS_ACCURACY

Use the I_MPI_STATS_ACCURACY environment variable to decrease statistics output.

Syntax

I_MPI_STATS_ACCURACY=<percentage>

Argument

<percentage> Float threshold value

Description

Set this environment variable to collect data only on those MPI functions that take a larger portion

of the elapsed time as a percentage of the total time spent inside all MPI calls.

Example

The following example represents a simple application code and IPM summary statistics format:

int main (int argc, char *argv[])

Intel® MPI Library Reference Manual for Linux* OS

194

{

 int i, rank, size, nsend, nrecv;

 MPI_Init (&argc, &argv);

 MPI_Comm_rank (MPI_COMM_WORLD, &rank);

 nsend = rank;

 MPI_Wtime();

 for (i = 0; i < 200; i++)

 {

 MPI_Barrier(MPI_COMM_WORLD);

 }

 /* open "reduce" region for all processes */

 MPI_Pcontrol(1, "reduce");

 for (i = 0; i < 1000; i++)

 MPI_Reduce(&nsend, &nrecv, 1, MPI_INT, MPI_MAX, 0, MPI_COMM_WORLD);

 /* close "reduce" region */

 MPI_Pcontrol(-1, "reduce");

 if (rank == 0)

 {

/* "send" region for 0-th process only */

 MPI_Pcontrol(1, "send");

 MPI_Send(&nsend, 1, MPI_INT, 1, 1, MPI_COMM_WORLD);

 MPI_Pcontrol(-1, "send");

 }

 if (rank == 1)

 {

 MPI_Recv(&nrecv, 1, MPI_INT, 0, 1, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

195

 }

 /* reopen "reduce" region */

 MPI_Pcontrol(1, "reduce");

 for (i = 0; i < 1000; i++)

 MPI_Reduce(&nsend, &nrecv, 1, MPI_INT, MPI_MAX, 0, MPI_COMM_WORLD);

 MPI_Wtime();

 MPI_Finalize ();

 return 0;

}

Command:

mpiexec -n 4 -env I_MPI_STATS ipm:terse ./a.out

Stats output:

command : ./a.out (completed)

host : svlmpihead01/x86_64_Linux mpi_tasks : 4 on 1 nodes

start : 05/25/11/05:44:13 wallclock : 0.092012 sec

stop : 05/25/11/05:44:13 %comm : 98.94

gbytes : 0.00000e+00 total gflop/sec : NA

Command:

mpiexec -n 4 -env I_MPI_STATS ipm ./a.out

Stats output:

command : ./a.out (completed)

Intel® MPI Library Reference Manual for Linux* OS

196

host : svlmpihead01/x86_64_Linux mpi_tasks : 4 on 1 nodes

start : 05/25/11/05:44:13 wallclock : 0.092012 sec

stop : 05/25/11/05:44:13 %comm : 98.94

gbytes : 0.00000e+00 total gflop/sec : NA

region : * [ntasks] = 4

[total] <avg> min max

entries 4 1 1 1

wallclock 0.332877 0.0832192 0.0732641 0.0920119

user 0.047992 0.011998 0.006999 0.019996

system 0.013997 0.00349925 0.002999 0.004

mpi 0.329348 0.082337 0.0723064 0.0912335

%comm 98.9398 98.6928 99.154

gflop/sec NA NA NA NA

gbytes 0 0 0 0

[time] [calls] <%mpi> <%wall>

MPI_Init 0.236192 4 71.71 70.95

MPI_Reduce 0.0608737 8000 18.48 18.29

MPI_Barrier 0.027415 800 8.32 8.24

MPI_Recv 0.00483489 1 1.47 1.45

MPI_Send 1.50204e-05 1 0.00 0.00

MPI_Wtime 1.21593e-05 8 0.00 0.00

MPI_Finalize 3.33786e-06 4 0.00 0.00

MPI_Comm_rank 1.90735e-06 4 0.00 0.00

MPI_TOTAL 0.329348 8822 100.00 98.94

region : reduce [ntasks] = 4

[total] <avg> min max

197

entries 8 2 2 2

wallclock 0.0638561 0.015964 0.00714302 0.0238571

user 0.034994 0.0087485 0.003999 0.015997

system 0.003999 0.00099975 0 0.002999

mpi 0.0608799 0.01522 0.00633883 0.0231845

%comm 95.3392 88.7417 97.1808

gflop/sec NA NA NA NA

gbytes 0 0 0 0

[time] [calls] <%mpi> <%wall>

MPI_Reduce 0.0608737 8000 99.99 95.33

MPI_Finalize 3.33786e-06 4 0.01 0.01

MPI_Wtime 2.86102e-06 4 0.00 0.00

MPI_TOTAL 0.0608799 8008 100.00 95.34

region : send [ntasks] = 4

[total] <avg> min max

entries 1 0 0 1

wallclock 2.89876e-05 7.24691e-06 1e-06 2.59876e-05

user 0 0 0 0

system 0 0 0 0

mpi 1.50204e-05 3.75509e-06 0 1.50204e-05

%comm 51.8165 0 57.7982

gflop/sec NA NA NA NA

gbytes 0 0 0 0

[time] [calls] <%mpi> <%wall>

MPI_Send 1.50204e-05 1 100.00 51.82

region : ipm_noregion [ntasks] = 4

Intel® MPI Library Reference Manual for Linux* OS

198

[total] <avg> min max

entries 13 3 3 4

wallclock 0.26898 0.0672451 0.0661182 0.068152

user 0.012998 0.0032495 0.001 0.004999

system 0.009998 0.0024995 0 0.004

mpi 0.268453 0.0671132 0.0659676 0.068049

%comm 99.8039 99.7721 99.8489

gflop/sec NA NA NA NA

gbytes 0 0 0 0

[time] [calls] <%mpi> <%wall>

MPI_Init 0.236192 4 87.98 87.81

MPI_Barrier 0.027415 800 10.21 10.19

MPI_Recv 0.00483489 1 1.80 1.80

MPI_Wtime 9.29832e-06 4 0.00 0.00

MPI_Comm_rank 1.90735e-06 4 0.00 0.00

MPI_TOTAL 0.268453 813 100.00 99.80

###

###ILP64 Support

3.5.6. ILP64 Support

The term ILP64 means that integer, long, and pointer data entities all occupy 8 bytes. This differs

from the more conventional LP64 model in which only long and pointer data entities occupy 8
bytes while integer entities occupy 4 bytes. More information on the historical background and the
programming model philosophy can be found, for example, in
http://www.unix.org/version2/whatsnew/lp64_wp.html

3.5.6.1. Using ILP64

Use the following options to enable the ILP64 interface

 Use the Fortran compiler driver option -i8 for separate compilation and the -ilp64 option for

separate linkage. For example,

$mpiifort -i8 -c test.f

$ mpiifort -ilp64 -o test test.o

199

 Use the mpiexec -ilp64 option to preload the ILP64 interface. For example,

$ mpiexec -ilp64 -n 2 ./myprog

 Use the C compiler driver option -ilp64 for both compilation (to choose an appropriate

mpi.h header) and linkage (to link against ILP64 binary). For example,

$ mpiicc –ilp64 -c test.c

$ mpiicc -ilp64 -o test test.o

If you use ILP64 data model in the C program, be cautious about mutual correspondence

between C datatypes and MPI datatypes, namely, use MPI_LONG datatype while operating on

data of type long int (or any other 64-bit integer type).

If you want your C program to be LP64/ILP64 portable by specifying a flexible size integer

datatype, don’t forget to introduce that flexibility for the MPI integer datatype. This example

program is supposed to work correctly both in LP64 and ILP64 data models:

#include <stdlib.h>

#include <stdio.h>

#include “mpi.h”

#ifdef ILP64

#define my_int long

#define MY_MPI_INT MPI_LONG

#else

#define my_int int

#define MY_MPI_INT MPI_INT

#endif

int main() {

my_int i, size, rank, buf[5] = {-1, -1, -1, -1, -1};

MPI_Init(NULL, NULL);

MPI_Comm_size(MPI_COMM_WORLD, &size);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if(size < 2) return 1;

if(rank == 0) {

for(i = 0; i < 5; i++) buf[i] = i;

MPI_Send(buf, 5, MY_MPI_INT, 1, 123, MPI_COMM_WORLD);

} else if(rank == 1) {

MPI_Recv(buf, 5, MY_MPI_INT, 0, 123, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

Intel® MPI Library Reference Manual for Linux* OS

200

for(i = 0; i < 5; i++) printf(“Received %d in buf[%d]\n”, (int)buf[i],

(int)i);

}

MPI_Finalize();

return 0;

}

The program will work correctly in both variants:

$ mpiicc –o test_lp64 test.c ; mpirun –n 2 ./test_lp64

Received 0 in buf[0]

Received 1 in buf[1]

Received 2 in buf[2]

Received 3 in buf[3]

Received 4 in buf[4]

$ mpiicc –o test_ilp64 –DILP64 –ilp64 test.c ; mpirun –n 2 ./test_ilp64

Received 0 in buf[0]

Received 1 in buf[1]

Received 2 in buf[2]

Received 3 in buf[3]

Received 4 in buf[4]

3.5.6.2. Known Issues and Limitations

 Data type counts and other arguments with values larger than 231-1 are not supported.

 Special MPI types MPI_FLOAT_INT, MPI_DOUBLE_INT, MPI_LONG_INT, MPI_SHORT_INT,

MPI_2INT, MPI_LONG_DOUBLE_INT, MPI_2INTEGER are not changed and still use a 4-byte

integer field.

 Predefined communicator attributes MPI_APPNUM, MPI_HOST, MPI_IO, MPI_LASTUSEDCODE,

MPI_TAG_UB, MPI_UNIVERSE_SIZE, and MPI_WTIME_IS_GLOBAL are returned by the functions

MPI_GET_ATTR and MPI_COMM_GET_ATTR as 4-byte integers. The same holds for the

predefined attributes that may be attached to the window and file objects.

 Do not use the -i8 option to compile MPI callback functions, such as error handling functions,

user-defined reduction operations.

 If you want to use the Intel® Trace Collector with the Intel MPI ILP64 executable files, you

must use a special ITC library. If necessary, the Intel MPI mpiifort compiler driver will select

the correct ITC library automatically.

 Use the mpif.h file instead of the MPI module in Fortran90* applications. The Fortran module

supports 32-bit INTEGER size only.

201

 There is currently no support for C and C++ applications.

3.5.7. Unified Memory Management

The Intel® MPI Library provides a way to replace the memory management subsystem by a user-

defined package. You may optionally set the following function pointers:

 i_malloc

 i_calloc

 i_realloc

 i_free

These pointers also affect the C++ new and delete operators.

The respective standard C library functions are used by default.

The following contrived source code snippet illustrates the usage of the unified memory subsystem:

 #include <i_malloc.h>

 #include <my_malloc.h>

 int main(int argc, int argv)

 {

 // override normal pointers

 i_malloc = my_malloc;

 i_calloc = my_calloc;

 i_realloc = my_realloc;

 i_free = my_free;

 #ifdef _WIN32

 // also override pointers used by DLLs

 i_malloc_dll = my_malloc;

 i_calloc_dll = my_calloc;

 i_realloc_dll = my_realloc;

 i_free_dll = my_free;

 #endif

 // now start using Intel(R) libraries

 }

3.5.8. File System Support

The Intel® MPI Library provides loadable shared modules to provide native support for the

following file systems:

 Panasas* ActiveScale* File System (PanFS)

 Parallel Virtual File System*, Version 2 (Pvfs2)

 Lustre* File System

Intel® MPI Library Reference Manual for Linux* OS

202

Set the I_MPI_EXTRA_FILESYSTEM environment variable to on to enable parallel file system

support. Set the I_MPI_EXTRA_FILESYSTEM_LIST environment variable to request native support

for the specific file system. For example, to request native support for Panasas* ActiveScale* File
System, do the following:

$ mpiexec -env I_MPI_EXTRA_FILESYSTEM on \

-env I_MPI_EXTRA_FILESYSTEM_LIST panfs -n 2 ./test

3.5.8.1. Environment Variables

I_MPI_EXTRA_FILESYSTEM

Turn on/off native parallel file systems support.

Syntax

I_MPI_EXTRA_FILESYSTEM=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Turn on native support for the parallel file systems

disable | no | off | 0 Turn off native support for the parallel file systems. This is the

default value

Description

Set this environment variable to enable parallel file system support. The

I_MPI_EXTRA_FILESYSTEM_LIST environment variable must be set to request native support for

the specific file system.

I_MPI_EXTRA_FILESYSTEM_LIST

Select specific file systems support.

Syntax

I_MPI_EXTRA_FILESYSTEM_LIST=<fs>[, <fs>, ... , <fs>]

Arguments

<fs> Define a target file system

panfs Panasas* ActiveScale* File System

pvfs2 Parallel Virtual File System, Version 2

lustre Lustre* File System

Description

Set this environment variable to request support for the specific parallel file system. This

environment variable is handled only if the I_MPI_EXTRA_FYLESYSTEM is enabled. The Intel® MPI

203

Library will try to load shared modules to support the file systems specified by
I_MPI_EXTRA_FILESYSTEM_LIST.

3.5.9. Multi-threaded memcpy Support

This topic provides information on how to use a multi-threaded version of memcpy implemented in

the Intel® MPI Library for Intel® Xeon Phi™ Coprocessors. You can use this experimental feature
to reach higher memory bandwidth between the ranks communicated through shared memory for
some applications.

I_MPI_MT_MEMCPY

Controls usage of the multi-threaded memcpy.

Syntax

I_MPI_MT_MEMCPY=<value>

Arguments

<value> Controls the usage of the multi-threaded memcpy

enable | yes | on | 1 Enable the multi-threaded memcpy in the single threaded version

of the Intel® MPI Library (MPI_THREAD_SINGLE). This

configuration is ignored for the thread safe version of Intel® MPI
Library

disable | no | off | 0 Disable the usage of the multi-threaded memcpy. This is the

default value

Description

Set this environment variable to control whether to use multi-threaded version of memcpy for

intra-node communication.

I_MPI_MT_MEMCPY_NUM_THREADS

Change the number of threads involved in performing multi-threaded memcpy.

Syntax

I_MPI_MT_MEMCPY_NUM_THREADS=<num>

Arguments

<num> The number of threads involved in performing multi-threaded

memcpy

>0 The default value is the lesser of 8 and the number of physical

cores within the MPI process pinning domain

Description

Use this environment variable to set the number of threads which perform memcpy operations per

each MPI rank. The value 1 is equivalent to the setting I_MPI_MT_MEMCPY=disable.

Intel® MPI Library Reference Manual for Linux* OS

204

I_MPI_MT_MEMCPY_THRESHOLD

Change the threshold for using multi-threaded memcpy.

Syntax

I_MPI_MT_MEMCPY_THRESHOLD=<nbytes>

Arguments

<nbytes> Define the multi-threaded memcpy threshold in bytes

>0 The default value is 32768

Description

Set this environment variable to control the threshold for using multi-threaded memcpy. If the

threshold is larger than the shared memory buffer size (for example, see
I_MPI_SHM_LMT_BUFFER_SIZE or I_MPI_SSHM_BUFFER_SIZE), multi-threaded memcpy will

never be used. The usage of multi-threaded memcpy is selected according to the following scheme:

 Buffers shorter than or equal to <nbytes> are sent using the serial version of memcpy. This

approach is faster for short and medium buffers.

 Buffers larger than <nbytes> are sent using the multi-threaded memcpy. This approach is

faster for large buffers.

I_MPI_MT_MEMCPY_SPIN_COUNT

Control the spin count value.

Syntax

I_MPI_MT_MEMCPY_SPIN_COUNT=<scount>

Arguments

<scount> Define the loop spin count when a thread waits for data to copy

before sleeping

>0 The default value is equal to 100000. The maximum value is

equal to 2147483647

Description

Set the spin count limit for the loop for waiting for data to be copied by the thread. When the limit

is exceeded and there is no data to copy, the thread goes to sleep.

Use the I_MPI_MT_MEMCPY_SPIN_COUNT environment variable for tuning application performance.

The best value for <scount> can be chosen on an experimental basis. It depends on the particular

computational environment and application.

205

4. Glossary

cell A pinging resolution in descriptions for pinning property.

hyper-threading

technology

A feature within the IA-32, IA-64, and Intel® 64 family of processors,

where each processor core provides the functionality of more than one

logical processor.

logical processor The basic modularity of processor hardware resource that allows a

software executive (OS) to dispatch task or execute a thread context.
Each logical processor can execute only one thread context at a time.

multi-core processor A physical processor that contains more than one processor core.

multi-processor

platform

A computer system made of two or more physical packages.

processor core The circuitry that provides dedicated functionalities to decode, execute

instructions, and transfer data between certain sub-systems in a
physical package. A processor core may contain one or more logical
processors.

physical package The physical package of a microprocessor capable of executing one or

more threads of software at the same time. Each physical package plugs
into a physical socket. Each physical package may contain one or more
processor cores.

processor topology Hierarchical relationships of "shared vs. dedicated" hardware resources

within a computing platform using physical package capable of one or
more forms of hardware multi-threading.

207

5. Index
$

$HOME/.mpd.conf 83

[

-[g]envexcl 15

-[g]envuser 15

{

-{cc cxx fc f77 f90}=<compiler> 9

1

-1 15

A

-a 15

-a <alias> 71

B

-binding 24

-bootstrap <bootstrap server> 23

-bootstrap jmi 24

-bootstrap-exec <bootstrap server> 24

-branch-count <num> 20

C

-check_mpi 7

–check_mpi [<checking_library>] 19, 69

-ckpoint 42

-ckpoint-interval 42

-ckpointlib 43

-ckpoint-logfile 44

-ckpoint-num 43

-ckpoint-prefix 44

-ckpoint-preserve 43

-ckpoint-tmp-prefix 44

-cleanup 23

-compchk 9

-config=<name> 7

-configfile <filename> 20, 68

cpuinfo 88

D

-dapl 65

demux 39

-demux <mode> 21

-disable-x 22

-dynamic_log 8

E

-ecfn <filename> 15, 72

-echo 8, 55, 56

-enable-x 22

-env <ENVVAR> <value> 72

-envall 72

-envexcl <list of env var names> 72

-envlist <list of env var names> 19, 72

-envnone 72

-envuser 72

F

-f <hostsfile> 18

-fast 8

G

-g 8

-g<l-option> 68

-gcc-version=<nnn> 9

-gdb 71

-gdba <jobid> 71

–genv 69

Intel® MPI Library Reference Manual for Linux* OS

208

-genv <ENVVAR> <value> 69

-genvall 69

-genvexcl 69

–genvlist 69

-genvnone 69

–genvnone 69

-genvuser 69

-grr <# of processes> 19, 67

H

-h 56, 57, 59, 61, 62, 66, 93

--help 55, 57, 58, 59, 60, 61, 62, 63, 66, 93

–help 66

-host <nodename> 28, 73

-hostfile<hostfile> 18

-hostos 28

-hosts <nodelist> 21

Hydra 15, 17, 23, 38

I

I_MPI_ HYDRA_JMI_LIBRARY 38

I_MPI_{CC CXX FC F77 F90} 12

I_MPI_{CC CXX FC F77 F90}_PROFILE 11

I_MPI_ADJUST_<opname> 165

I_MPI_ADJUST_REDUCE_SEGMENT 169

I_MPI_CHECK_COMPILER 12

I_MPI_CHECK_PROFILE 7, 11

I_MPI_CKPOINT 44

I_MPI_CKPOINT_INTERVAL 44

I_MPI_CKPOINT_LOGFILE 44

I_MPI_CKPOINT_NUM 44

I_MPI_CKPOINT_PREFIX 44

I_MPI_CKPOINT_PRESERVE 44

I_MPI_CKPOINT_TMP_PREFIX 44

I_MPI_CKPOINTLIB 44

I_MPI_COMPATIBILITY 176

I_MPI_COMPILER_CONFIG_DIR 13

I_MPI_DAPL_BUFFER_NUM 139

I_MPI_DAPL_BUFFER_SIZE 140, 156

I_MPI_DAPL_CHECK_MAX_RDMA_SIZE 141

I_MPI_DAPL_CONN_EVD_SIZE 143

I_MPI_DAPL_DESIRED_STATIC_CONNECTIO

NS_NUM 145

I_MPI_DAPL_DIRECT_COPY_THRESHOLD 137

I_MPI_DAPL_EAGER_MESSAGE_AGGREGATI

ON 138

I_MPI_DAPL_MAX_MSG_SIZE 142

I_MPI_DAPL_PROVIDER_LIST 52

I_MPI_DAPL_RDMA_RNDV_WRITE 141

I_MPI_DAPL_RNDV_BUFFER_ALIGNMENT 140

I_MPI_DAPL_SCALABLE_PROGRESS 139

I_MPI_DAPL_SR_BUF_NUM 144

I_MPI_DAPL_SR_THRESHOLD 143

I_MPI_DAPL_TRANSLATION_CACHE 136

I_MPI_DAPL_TRANSLATION_CACHE_AVL_TR

EE 136

I_MPI_DAPL_UD 145, 149

I_MPI_DAPL_UD_ACK_RECV_POOL_SIZE148,

153

I_MPI_DAPL_UD_ACK_SEND_POOL_SIZE147,

153

I_MPI_DAPL_UD_CONN_EVD_SIZE 149, 154

I_MPI_DAPL_UD_CONNECTION_TIMEOUT154

I_MPI_DAPL_UD_CREATE_CONN_QUAL 154

I_MPI_DAPL_UD_DESIRED_STATIC_CONNEC

TIONS_NUM 152, 154

I_MPI_DAPL_UD_DFACTOR 154

209

I_MPI_DAPL_UD_DIRECT_COPY_THRESHOLD

 146, 152, 153

I_MPI_DAPL_UD_EAGER_DYNAMIC_CONNEC

TION 152, 153

I_MPI_DAPL_UD_FINALIZE_RETRY_COUNT

 154

I_MPI_DAPL_UD_FINALIZE_TIMEOUT 154

I_MPI_DAPL_UD_MAX_MSG_SIZE 154

I_MPI_DAPL_UD_MAX_RDMA_DTOS 154, 155

I_MPI_DAPL_UD_MAX_RDMA_SIZE 152, 154

I_MPI_DAPL_UD_MULTIPLE_EAGER_SEND

 154

I_MPI_DAPL_UD_NA_SBUF_LIMIT 154

I_MPI_DAPL_UD_NUMBER_CREDIT_UPDATE

 153

I_MPI_DAPL_UD_PKT_LOSS_OPTIMIZATION

 154

I_MPI_DAPL_UD_PORT 154

I_MPI_DAPL_UD_PROVIDER 145, 153

I_MPI_DAPL_UD_RDMA_MIXED 153

I_MPI_DAPL_UD_RECV_BUFFER_NUM 146,

153

I_MPI_DAPL_UD_RECV_EVD_SIZE 150, 154

I_MPI_DAPL_UD_REQ_EVD_SIZE 149, 154

I_MPI_DAPL_UD_REQUEST_QUEUE_SIZE 154

I_MPI_DAPL_UD_RESENT_TIMEOUT 153

I_MPI_DAPL_UD_RNDV_BUFFER_ALIGNMENT

 150, 154

I_MPI_DAPL_UD_RNDV_COPY_ALIGNMENT_

THRESHOLD 151, 154

I_MPI_DAPL_UD_RNDV_DYNAMIC_CONNECT

ION 151, 153

I_MPI_DAPL_UD_RNDV_MAX_BLOCK_LEN

 150

I_MPI_DAPL_UD_SEND_BUFFER_NUM 147,

153

I_MPI_DAPL_UD_SEND_BUFFER_SIZE 154

I_MPI_DAPL_UD_TRANSLATION_CACHE 148,

154

I_MPI_DAPL_UD_TRANSLATION_CACHE_AVL

_TREE 148, 154

I_MPI_DAPL_UD_TRANSLATION_CACHE_MA

X_ENTRY_NUM 154

I_MPI_DAPL_UD_TRANSLATION_CACHE_MA

X_MEMORY_SIZE 154

I_MPI_DAT_LIBRARY 136

I_MPI_DEBUG 8, 73

I_MPI_DEBUG_OUTPUT 75

I_MPI_DYNAMIC_CONNECTION 126

I_MPI_DYNAMIC_CONNECTION_MODE 138

I_MPI_EAGER_THRESHOLD 123, 124

I_MPI_ENV_PREFIX_LIST 53

I_MPI_EXTRA_FILESYSTEM 202

I_MPI_EXTRA_FILESYSTEM_LIST 202, 203

I_MPI_FABRICS 119, 122, 123, 134

I_MPI_FABRICS_LIST 121, 122, 176

I_MPI_FALLBACK 122

I_MPI_FAULT_CONTINUE 177, 178

I_MPI_HYDRA_BOOTSTRAP 24, 33

I_MPI_HYDRA_BOOTSTRAP_EXEC 34

I_MPI_HYDRA_BRANCH_COUNT 37

I_MPI_HYDRA_CLEANUP 39

I_MPI_HYDRA_DEBUG 31

I_MPI_HYDRA_DEMUX 38

I_MPI_HYDRA_ENV 31

I_MPI_HYDRA_GDB_REMOTE_SHELL 37

I_MPI_HYDRA_HOST_FILE 30

I_MPI_HYDRA_IFACE 38

I_MPI_HYDRA_JMI_LIBRARY 24

I_MPI_HYDRA_PMI_AGGREGATE 20, 37

Intel® MPI Library Reference Manual for Linux* OS

210

I_MPI_HYDRA_PMI_CONNECT 35

I_MPI_HYDRA_RMK 27, 35

I_MPI_INTRANODE_EAGER_THRESHOLD 123,

130, 132, 134

I_MPI_JOB_ABORT_SIGNAL 79

I_MPI_JOB_CHECK_LIBS 36, 69, 77

I_MPI_JOB_CONFIG_FILE 84

I_MPI_JOB_CONTEXT 60, 85

I_MPI_JOB_FAST_STARTUP 81

I_MPI_JOB_RESPECT_PROCESS_PLACEMENT

 40

I_MPI_JOB_SIGNAL_PROPAGATION 33

I_MPI_JOB_STARTUP_TIMEOUT 77, 78

I_MPI_JOB_TAGGED_PORT_OUTPUT 85, 86

I_MPI_JOB_TIMEOUT 31, 78

I_MPI_JOB_TIMEOUT_SIGNAL 32, 33, 79

I_MPI_JOB_TRACE_LIBS 36, 69, 77

I_MPI_MIC 50

I_MPI_MIC_POSTFIX 52

I_MPI_MIC_PREFIX 51

I_MPI_MPD_CHECK_PYTHON 86

I_MPI_MPD_CLEAN_LOG 87

I_MPI_MPD_RSH 86

I_MPI_MPD_TMPDIR 86, 87

I_MPI_MPIRUN_CLEANUP 16

I_MPI_MT_MEMCPY 203

I_MPI_MT_MEMCPY_NUM_THREADS 203

I_MPI_MT_MEMCPY_SPIN_COUNT 204

I_MPI_MT_MEMCPY_THRESHOLD 204

I_MPI_OFA_ADAPTER_NAME 159

I_MPI_OFA_DYNAMIC_QPS 162

I_MPI_OFA_LIBRARY 163

I_MPI_OFA_NONSWITCH_CONF 163

I_MPI_OFA_NUM_ADAPTERS 158

I_MPI_OFA_NUM_PORTS 159

I_MPI_OFA_NUM_RDMA_CONNECTIONS 159,

160

I_MPI_OFA_PACKET_SIZE 162

I_MPI_OFA_RAIL_SCHEDULER 160

I_MPI_OFA_SWITCHING_TO_RDMA 160

I_MPI_OFA_TRANSLATION_CACHE 161

I_MPI_OFA_TRANSLATION_CACHE_AVL_TRE

E 161

I_MPI_OFA_USE_XRC 162

I_MPI_OUTPUT_CHUNK_SIZE 80

I_MPI_PERHOST 35, 76

I_MPI_PIN 99, 103

I_MPI_PIN_CELL 105

I_MPI_PIN_DOMAIN 106, 107, 108, 109, 110,

118

I_MPI_PIN_MODE 99

I_MPI_PIN_ORDER 117

I_MPI_PIN_PROCESSOR_LIST 100, 108

I_MPI_PIN_PROCS 100

I_MPI_PMI_EXTENSIONS 81

I_MPI_PRINT_VERSION 76

I_MPI_PROCESS_MANAGER 16, 93

I_MPI_RESTART 47

I_MPI_ROOT 13

I_MPI_SCALABLE_OPTIMIZATION 125

I_MPI_SHM_BYPASS 134

I_MPI_SHM_CACHE_BYPASS 127

I_MPI_SHM_CACHE_BYPASS_THRESHOLD

 127

I_MPI_SHM_CACHE_BYPASS_THRESHOLDS

 127

211

I_MPI_SHM_CELL_NUM 130

I_MPI_SHM_CELL_SIZE 124, 130

I_MPI_SHM_FBOX_SIZE 129

I_MPI_SHM_LMT 130

I_MPI_SHM_LMT_BUFFER_NUM 131

I_MPI_SHM_LMT_BUFFER_SIZE 132

I_MPI_SOCK_SCALABLE_OPTIMIZATION 125

I_MPI_SPIN_COUNT 124, 135

I_MPI_SSHM 132

I_MPI_SSHM_BUFFER_NUM 133

I_MPI_SSHM_BUFFER_SIZE 133

I_MPI_SSHM_DYNAMIC_CONNECTION 133

I_MPI_STATS 179, 182, 186

I_MPI_STATS_ACCURACY 185

I_MPI_STATS_BUCKETS 181

I_MPI_STATS_FILE 182, 186

I_MPI_STATS_SCOPE 179, 187

I_MPI_TCP_BUFFER_SIZE 157

I_MPI_TCP_NETMASK 155

I_MPI_TCP_POLLING_MODE 157

I_MPI_TIMER_KIND 175

I_MPI_TMI_LIBRARY 158

I_MPI_TMI_PROVIDER 158

I_MPI_TMPDIR 39

I_MPI_TRACE_PROFILE 7, 11

I_MPI_WAIT_MODE 122, 126

-ib 29, 65

-iface <interface> 21

-ifhn <interface/hostname> 15, 55, 72

-ilp64 7

IPM 185, 193

L

-l 60, 61, 71

large message transfer (LMT) 131

LD_LIBRARY_PATH 38

libjmi.so 24

LMT 131, 132

--loccons 15

M

-m 15, 56, 57, 71

–machine <machine file> 18

-machinefile <machine file> 18, 67

max_rdma_size 142

--maxbranch=<maxbranch> |-b

<maxbranch> 15

mpd 16, 17, 55, 56, 57, 58, 59, 61, 83, 84,

85, 86

mpd.hosts 57, 84

MPD_SECRETWORD 84

--mpd=<mpdcmd>|-m <mpdcmd> 15

mpdallexit 58, 87

mpdboot 15, 16, 56, 84, 85

mpdcheck 60

mpdcleanup 59

mpdexit 58

mpdhelp 63

mpdkilljob 63

mpdlistjobs 61

mpdringtest 61

mpdsigjob 62

mpdtrace 16, 60

MPI_Allgather 168, 180

MPI_Allgatherv 168, 180

Intel® MPI Library Reference Manual for Linux* OS

212

MPI_Allreduce 169, 180, 182

MPI_Alltoall 169, 180

MPI_Alltoallv 169, 180

MPI_Alltoallw 169, 180

MPI_ANY_SOURCE 157

MPI_Barrier 169, 180

MPI_Bcast 169, 180

MPI_COMM_JOIN 177

MPI_COMM_WORLD 177

MPI_ERRORS_RETURN 177, 178

MPI_Exscan 169, 180

MPI_Finalize 186

MPI_Gather 169, 180

MPI_Gatherv 169, 180

MPI_Init 186

MPI_Pcontrol 185

MPI_Reduce 169, 180

MPI_Reduce_scatter 169

MPI_Scan 169, 180

MPI_Scatter 169, 180

MPI_Scatterv 169, 180

mpicleanup 39, 40, 41

mpiexec 15, 16, 35, 63, 64, 67, 68, 70, 73,

78, 79, 80, 96

mpiexec.hydra 14, 17, 20, 21, 22, 23, 27, 31,

33, 37, 40

mpiicc -g 75

mpirun 15, 16, 38

mpitine 94

mpitune 22, 67, 91

-mt_mpi 6

-mx 30, 66

N

–n 16, 18

-n <# of processes> 28, 72

--ncpus=<ncpus> 15

-noconf 22, 72

-nolocal 21, 67

–np 16

-np <# of processes> 28, 72

O

-O 8

--ordered | -o 15

-ordered-output 23, 71

P

--parallel-startup |-p 15

PATH 6

-path <directory> 23, 28, 73

-perhost 18

-perhost <# of processes > 19

-perhost <# of processes> 67

pmi_proxy 20

-pmi-aggregate 20

-pmi-connect <mode> 19

-pmi-noaggregate 20

-ppn <# of processes > 19

-ppn <# of processes> 67

-print-all-exitcodes 28

-print-rank-map 28

-profile=<profile_name> 7, 11

-psm 30, 66

R

-rdma 29, 65

--remcons 15

213

-restart 43

-rmk <RMK> 27

-rr 19, 67

S

-s <spec> 22, 71

secretword 84

-shell|-s 15

-show 8

-static 7

-static_mpi 6

T

-t 7

-t [<profiling_library>] 19, 69

-tmi 30, 66

-tmpdir 23

TMPDIR 39, 86

TotalView 20, 70, 82

-trace 6, 11, 36

-trace [<profiling_library>] 19, 69

-tune 22, 96

-tune [<arg >] 66

-tv 20, 70

-tva <jobid> 70

-tva <pid> 20

TVDSVRLAUNCHCMD 70

-tvsu 16, 70

U

-umask <umask> 29, 73

--user=<user> | -u <user> 15

V

-v 10, 60, 61, 66

-verbose 27, 57, 95

-version 66

-version or -V 23

VT_ROOT 7, 13

W

-wdir <directory> 29, 73

	1. Introduction
	1.1. Introducing Intel® MPI Library
	1.2. Intended Audience
	1.3. What's New
	1.4. Notational Conventions
	1.5. Related Information

	2. Command Reference
	2.1. Compiler Commands
	2.1.1. Compiler Command Options
	2.1.2. Configuration Files
	2.1.3. Profiles
	2.1.4. Environment Variables

	2.2. Simplified Job Startup Command
	2.3. Scalable Process Management System (Hydra) Commands
	2.3.1. Global Options
	Bootstrap Options
	Binding Options
	2.3.1.2. Communication Subsystem Options
	2.3.1.3. Other Options

	2.3.2. Local Options
	2.3.3. Extended Device Control Options
	2.3.4. Environment Variables
	2.3.5. Cleaning up Utility
	2.3.6. Checkpoint-Restart Support
	2.3.6.1. Global Options
	2.3.6.2. Local Options
	2.3.6.3. Environment Variables
	2.3.6.4. Running MPI Applications
	Timer Driven Checkpoint
	Explicit Signal Driven Checkpoint
	Using Local Storage

	2.3.6.5. Restarting MPI Applications
	2.3.6.6. Viewing Checkpoint Activity in Log File
	2.3.6.7. Automatic Cleanup of Previous Checkpoints

	2.4. Intel® Xeon Phi™ Coprocessor Support
	2.4.1. Usage Model
	2.4.2. Environment Variables
	2.4.3. Compiler Commands

	2.5. Multipurpose Daemon Commands
	2.5.1. Job Startup Commands
	2.5.1.1. Extended Device Control Options
	2.5.1.2. Global Options
	2.5.1.3. Local Options
	2.5.1.4. Configuration Files
	2.5.1.5. Environment Variables

	2.5.2. Configuration Files
	2.5.3. Environment Variables

	2.6. Processor Information Utility

	3. Tuning Reference
	3.1. Using mpitune Utility
	3.1.1. Cluster Specific Tuning
	3.1.1.1. Replacing the Default Benchmark

	3.1.2. Application Specific Tuning
	3.1.3. Tuning Utility Output

	3.2. Process Pinning
	3.2.1. Processor Identification
	3.2.2. Environment Variables
	3.2.3. Interoperability with OpenMP* API

	3.3. Fabrics Control
	3.3.1. Communication Fabrics Control
	3.3.2. Shared Memory Control
	3.3.3. DAPL-capable Network Fabrics Control
	3.3.4. DAPL UD-capable Network Fabrics Control
	3.3.5. TCP-capable Network Fabrics Control
	3.3.6. TMI-capable Network Fabrics Control
	3.3.7. OFA*-capable Network Fabrics Control
	3.3.8. Failover Support in the OFA* Device

	3.4. Collective Operation Control
	3.4.1. I_MPI_ADJUST Family
	3.4.2. I_MPI_MSG Family

	3.5. Miscellaneous
	3.5.1. Timer Control
	3.5.2. Compatibility Control
	3.5.3. Dynamic Process Support
	3.5.4. Fault Tolerance
	3.5.4.1. Environment Variables
	3.5.4.2. Usage Model

	3.5.5. Statistics Gathering Mode
	3.5.5.1. Native Statistics Format
	3.5.5.2. IPM Statistics Format
	Region Control

	3.5.6. ILP64 Support
	3.5.6.1. Using ILP64
	3.5.6.2. Known Issues and Limitations

	3.5.7. Unified Memory Management
	3.5.8. File System Support
	3.5.8.1. Environment Variables

	3.5.9. Multi-threaded memcpy Support

	4. Glossary
	5. Index

