


A First-order reaction

B Second-order reaction

C Zero-order reaction

Figure 16.10 Graphical method for finding the reaction order from the integrated rate law.

- For a *second-order reaction* with one reactant, we have

$$\frac{1}{[A]_t} - \frac{1}{[A]_0} = kt$$

Rearranging gives

$$\frac{1}{[A]_t} = kt + \frac{1}{[A]_0}$$

$$y = mx + b$$

In this case, a plot of $1/[A]_t$ vs. t gives a straight line with slope = k and y -intercept = $1/[A]_0$ (Figure 16.10B).

- For a *zero-order reaction*, we have

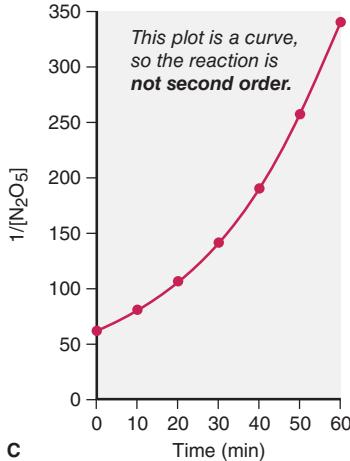
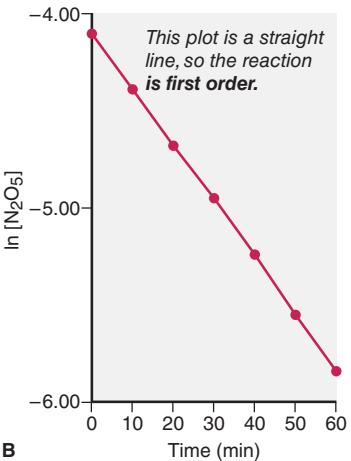
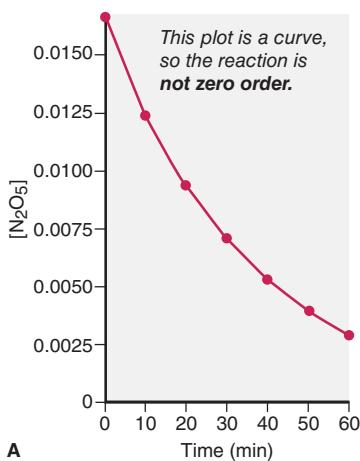
$$[A]_t - [A]_0 = -kt$$

Rearranging gives

$$[A]_t = -kt + [A]_0$$

$$y = mx + b$$

A plot of $[A]_t$ vs. t gives a straight line with slope = $-k$ and y -intercept = $[A]_0$ (Figure 16.10C).




Some trial-and-error graphical plotting is required to find the reaction order from the concentration and time data:

- If you obtain a straight line when you plot $\ln [\text{reactant}]$ vs. t , the reaction is *first order* with respect to that reactant.
- If you obtain a straight line when you plot $1/[\text{reactant}]$ vs. t , the reaction is *second order* with respect to that reactant.
- If you obtain a straight line when you plot $[\text{reactant}]$ vs. t , the reaction is *zero order* with respect to that reactant.

In Figure 16.11 we use this approach to determine the order for the decomposition of N_2O_5 . When we plot the data from each column in the table vs. time, we find that the plot of $\ln [\text{N}_2\text{O}_5]$ vs. t is linear (part B), while the plots of $[\text{N}_2\text{O}_5]$ vs. t (part A) and of $1/[\text{N}_2\text{O}_5]$ vs. t (part C) are *not*; therefore, the decomposition is first order in N_2O_5 .

Figure 16.11 Graphical determination of the reaction order for the decomposition of N_2O_5 . The time and concentration data in the table are used to obtain the three plots, A, B, and C.

Time (min)	$[\text{N}_2\text{O}_5]$	$\ln [\text{N}_2\text{O}_5]$	$1/[\text{N}_2\text{O}_5]$
0	0.0165	-4.104	60.6
10	0.0124	-4.390	80.6
20	0.0093	-4.68	1.1×10^2
30	0.0071	-4.95	1.4×10^2
40	0.0053	-5.24	1.9×10^2
50	0.0039	-5.55	2.6×10^2
60	0.0029	-5.84	3.4×10^2

