Next: 39.1.1 Adding gradients (ADD) Up: 39 ENERGY GRADIENTS Previous: 39 ENERGY GRADIENTS

39.1 Analytical energy gradients

MOLPRO uses two different gradient programs:

The CADPAC gradient program is based on the CADPAC integral routines by R. D. Amos. Currently, this program works for closed shell SCF, high spin RHF, and (state averaged) MCSCF. In the MCSCF case the wavefunction must either be fully optimized, or frozen core orbitals must be taken from a closed-shell SCF calculation (but this does not work in the case of state-averaged MCSCF). Note that CADPAC does not work with generally contracted basis functions.

The ALASKA gradient program is based on the SEWARD integral routines by R. Lindh. It allows the calculation of gradients of generally contracted basis functions for closed shell SCF, open shell RHF, UHF, RKS, UKS, MCSCF, MP2, LMP2, DF-LMP2, QCISD, QCISD(T), and RS2 (CASPT2). Gradients for state averaged MCSCF wave functions can be evaluated using the RS2 gradient program, see section 39.1.5. For details about CASPT2 gradients, see section 22.7.

By default, the program uses ALASKA gradients whenever possible. However, it is possible to force the use of a particular gradient program by defining the variable GRADTYP before calling the gradient program:

GRADTYP=ALASKA
GRADTYP=CADPAC

The gradient program is called using the FORCE command:

FORCE

Normally, the FORCE command is not needed, since geometry optimizations should be performed using the OPTG procedure. An exception is the optimization of counterpoise corrected energies, which requires several force calculations (cf. section 40.4.7).

If no further data cards are given, the default is to evaluate the gradient for the last optimized wavefunction. In this case no further input is needed for ordinary gradient cases (the program remembers the records on which the wavefunction information is stored). An exception is the unusual case that several different CPMCSCF calculations have been formed in a previous MCSCF calculation. In this case the SAMC directive must be used to select the desired record. If analytical gradients are not available for the last wavefunction, the gradient is computed numerically. For more details regarding numerical energy gradients see section 39.2.



Subsections

Next: 39.1.1 Adding gradients (ADD) Up: 39 ENERGY GRADIENTS Previous: 39 ENERGY GRADIENTS

molpro@molpro.net
Sep 24, 2008