Next: 18.1.7 B97: B97=B97DF + Up: 18.1 Density Functionals Previous: 18.1.5 B88:


18.1.6 B95: Becke's 1995 Correlation Functional

A. D. Becke, J. Chem. Phys. 104, 1040 (1995)

${\tau }$-dependent dynamical correlation functional.


\begin{displaymath}
K=
{\frac {E}{1+l\left (\chi_{\alpha}^{2}+
\chi_{\beta}^{2}\...
...silon(\rho_{s},0)}{H\left (1+\nu \chi_{s}^{
2}\right )^{2}}}
,\end{displaymath} (30)

where
\begin{displaymath}
E=\epsilon(\rho_{\alpha},\rho_{\beta})-\epsilon(\rho_{\alpha},0)-
\epsilon(\rho_{\beta},0)
,\end{displaymath} (31)


\begin{displaymath}
l= 0.0031
,\end{displaymath} (32)


\begin{displaymath}
F=\tau_{s}-\frac {\sigma_{ss}}{4\rho_{s}}
,\end{displaymath} (33)


\begin{displaymath}
H=3\left ({6\pi }^{2}\right )^{2/3}\rho_{s}^
{5/3}/5
,\end{displaymath} (34)


\begin{displaymath}
\nu= 0.038
\end{displaymath} (35)

and ${\epsilon(\alpha,\beta)}$ is the correlation energy per particle of the Local Spin Density Approximation(PW92C).



P.J. Knowles and H.-J. Werner
molpro@tc.bham.ac.uk
Jan 15, 2002