Next: 18.1.1 B86: X Up: 18 THE DENSITY FUNCTIONAL Previous: 18 THE DENSITY FUNCTIONAL

18.1 Density Functionals

In the following, $\rho_\alpha$ and $\rho_\beta$ are the $\alpha$ and $\beta$ spin densities; the total spin density is $\rho$;

The gradients of the density enter through

$\displaystyle \sigma_{\alpha\alpha}$ $\textstyle =$ $\displaystyle \nabla\rho_\alpha \cdot \nabla\rho_\alpha \; ,
\sigma_{\beta\beta...
...\; , \sigma = \sigma_{\alpha\alpha}+\sigma_{\beta\beta}+2\sigma _{\alpha\beta}.$ (1)
$\displaystyle \chi_\alpha$ $\textstyle =$ $\displaystyle \frac{\sqrt{\sigma_{\alpha\alpha}}}{\rho_\alpha^{4/3}}\;,
\chi_\beta = \frac{\sqrt{\sigma_{\beta\beta}}}{\rho_\beta^{4/3}}\;.$ (2)
$\displaystyle \upsilon_\alpha$ $\textstyle =$ $\displaystyle \nabla^2\rho_\alpha \; ,
\upsilon_\beta=\nabla^2\rho_\beta \; ,
\upsilon=\upsilon_\alpha+\upsilon_\beta \;.$ (3)

Additionally, the kinetic energy density for a set of (Kohn-Sham) orbitals generating the density can be introduced through
$\displaystyle \tau_\alpha$ $\textstyle =$ $\displaystyle \sum_i^\alpha
\left\vert{\bf\nabla}\phi_i\right\vert^2
\; , \tau_...
...ta
\left\vert{\bf\nabla}\phi_i\right\vert^2
\;,
\tau=\tau_\alpha+\tau_\beta \;.$ (4)

All of the available functionals are of the general form

$\displaystyle F\left[\rho_s,\rho_{\bar{s}},
\sigma_{ss},\sigma_{\bar{s}\bar{s}},\sigma_{s\bar{s}},
\tau_s,\tau_{\bar{s}},
\upsilon_s,\upsilon_{\bar{s}}
\right]$ $\textstyle =$ $\displaystyle \int d^3{\bf r}
K\left(\rho_s,\rho_{\bar{s}},
\sigma_{ss},\sigma_...
...\sigma_{s\bar{s}},
\tau_s,\tau_{\bar{s}},
\upsilon_s,\upsilon_{\bar{s}}
\right)$ (5)

where $\bar{s}$ is the conjugate spin to $s$.



Subsections

P.J. Knowles and H.-J. Werner
molpro@tc.bham.ac.uk
Jan 15, 2002