Next: 18.1.40 VWN: Vosko-Wilk-Nusair (1980) Up: 18.1 Density Functionals Previous: 18.1.38 THGFCO:


18.1.39 VSXC:

T. Van Voorhis and G. E. Scuseria, J. Chem. Phys. 109, 400 (1998)
$\displaystyle K$ $\textstyle =$ $\displaystyle F(x,z,p_{{3}},q_{{3}},r_{{3}},t_{{3}},u_{{3}},v_{{3}},\alpha_{{3}...
...lpha},\rho_{\beta})-\epsilon(\rho_{\alpha},0)-
\epsilon(\rho_{\beta},0)\right )$  
  $\textstyle +$ $\displaystyle \sum_s
\left (\rho_{s}\right )^{4/3}F(\chi_{s},{\it z_s},p_{1},q_{{1}},r_{{1}
},t_{{1}},u_{{1}},v_{{1}},\alpha_{{1}})$  
    $\displaystyle +{\it d_s} \epsilon(\rho_{s},0)F
(\chi_{s},{\it z_s},p_{{2}},q_{{2}},r_{{2}},t_{{2}},u_{{2}},v_{{2}},
\alpha_{{2}})
,$ (219)

where
\begin{displaymath}
x=\chi_{\alpha}^{2}+\chi_{\beta}^{2}
,\end{displaymath} (220)


\begin{displaymath}
{\it z_s}={\frac {\tau_{s}}{\rho_{s}^{5/3}}}-{\it c_f}
,\end{displaymath} (221)


\begin{displaymath}
z={\frac {\tau_{\alpha}}{\rho_{\alpha}^{5/3}}}+{\frac {
\tau_{\beta}}{\rho_{\beta}^{5/3}}}-2 {\it c_f}
,\end{displaymath} (222)


\begin{displaymath}
{\it d_s}=1-{\frac {\chi_{s}^{2}}{4 {\it z_s}+4 {\it c_f}
}}
,\end{displaymath} (223)


\begin{displaymath}
F(x,z,p,q,c,d,e,f,\alpha)={\frac {p}{\lambda(x,z,\alpha)}}+{...
...{\frac {d{x}^{4}+e{x}
^{2}z+f{z}^{2}}{\lambda^3(x,z,\alpha)}}
,\end{displaymath} (224)


\begin{displaymath}
\lambda(x,z,\alpha)=1+\alpha \left ({x}^{2}+z\right )
,\end{displaymath} (225)


\begin{displaymath}
{\it c_f}=3\left (3{\pi }^{2}\right )^{2/3}/5
,\end{displaymath} (226)


\begin{displaymath}
p
=
[- 0.98, 0.3271, 0.7035]
,\end{displaymath} (227)


\begin{displaymath}
q
=
[- 0.003557,- 0.03229, 0.007695]
,\end{displaymath} (228)


\begin{displaymath}
r
=
[ 0.00625,- 0.02942, 0.05153]
,\end{displaymath} (229)


\begin{displaymath}
t
=
[- 0.00002354, 0.002134, 0.00003394]
,\end{displaymath} (230)


\begin{displaymath}
u
=
[- 0.0001283,- 0.005452,- 0.001269]
,\end{displaymath} (231)


\begin{displaymath}
v
=
[ 0.0003575, 0.01578, 0.001296]
,\end{displaymath} (232)


\begin{displaymath}
\alpha
=
[ 0.001867, 0.005151, 0.00305]
\end{displaymath} (233)

and ${\epsilon(\alpha,\beta)}$ is the correlation energy per particle of the Local Spin Density Approximation(PW92C).

VS99 is aliased to VSXC.



Next: 18.1.40 VWN: Vosko-Wilk-Nusair (1980) Up: 18.1 Density Functionals Previous: 18.1.38 THGFCO:

P.J. Knowles and H.-J. Werner
molpro@tc.bham.ac.uk
Jan 15, 2002