Next: 18.1.41 Alias functional descriptions
Up: 18.1 Density Functionals
Previous: 18.1.39 VSXC:
18.1.40 VWN: Vosko-Wilk-Nusair (1980) local correlation energy
S. H. Vosko, L. Wilk and M. Nusair, Can. J. Phys. 58, 1200 (1980)
 |
(234) |
where
 |
(235) |
 |
(236) |
 |
(237) |
 |
(238) |
 |
(239) |
 |
(240) |
 |
(241) |
 |
(242) |
 |
(244) |
 |
(245) |
![\begin{displaymath}
k
=
[ 0.0310907, 0.01554535,-1/\left (6{\pi }\right )^{2}]
,\end{displaymath}](img422.gif) |
(246) |
![\begin{displaymath}
l
=
[- 0.10498,- 0.325,- 0.0047584]
,\end{displaymath}](img423.gif) |
(247) |
![\begin{displaymath}
m
=
[ 3.72744, 7.06042, 1.13107]
\end{displaymath}](img424.gif) |
(248) |
and
![\begin{displaymath}
n
=
[ 12.9352, 18.0578, 13.0045]
.\end{displaymath}](img425.gif) |
(249) |
Next: 18.1.41 Alias functional descriptions
Up: 18.1 Density Functionals
Previous: 18.1.39 VSXC:
P.J. Knowles and H.-J. Werner
molpro@tc.bham.ac.uk
Jan 15, 2002