Next: 18.1.28 PW91X: Perdew-Wang 1991 Up: 18.1 Density Functionals Previous: 18.1.26 PW91: PW91=PW91X+PW91C


18.1.27 PW91C: Perdew-Wang 1991 GGA Correlation Functional

J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson and C. Fiolhais, Phys. Rev. B 46, 6671 (1992)


\begin{displaymath}
K=
\rho \left (\epsilon(\rho_{\alpha},\rho_{\beta})+H(d,\rho_{\alpha},
\rho_{\beta})\right )
,\end{displaymath} (130)

where
\begin{displaymath}
d=\frac{\sqrt{\sigma}}{4u(\rho_{\alpha},\rho_{\beta})}\left(\frac{\pi}{3\rho^7}\right)^{1/6}
\end{displaymath} (131)


\begin{displaymath}
u(\alpha,\beta)=\left\{\left (1+\zeta(\alpha,\beta)\right )^{2/3}+
\left (1-\zeta(\alpha,\beta)\right )^{2/3}\right\}/2
,\end{displaymath} (132)


\begin{displaymath}
H(d,\alpha,\beta)=L(d,\alpha,\beta)+J(d,\alpha,\beta)
,\end{displaymath} (133)


\begin{displaymath}
L(d,\alpha,\beta)=\frac{u^3(\rho_{\alpha},\rho_{\beta}
{\lam...
...lpha,\beta){d}^{2}+A^2(\alpha,
\beta){d}^{4}\right )}}\right)
,\end{displaymath} (134)


\begin{displaymath}
J(d,\alpha,\beta)=\nu \left (\phi(r(\alpha,\beta))-\kappa-3...
...},\rho_{\beta}){d}^{2}}{\left (3\pi^5\right )^{1/3}
\rho}}}}}
,\end{displaymath} (135)


\begin{displaymath}
A(\alpha,\beta)=\frac{2 \iota}{\lambda}\left ({e^{-{\frac {...
...(\rho_{\alpha},\rho_{\beta})
{\lambda}^{2}}}}}-1\right )^{-1}
,\end{displaymath} (136)


\begin{displaymath}
\iota= 0.09
,\end{displaymath} (137)


\begin{displaymath}
\lambda=\nu \kappa
,\end{displaymath} (138)


\begin{displaymath}
\nu=16\left({\frac {3}{\pi }}\right)^{1/3}
,\end{displaymath} (139)


\begin{displaymath}
\kappa= 0.004235
,\end{displaymath} (140)


\begin{displaymath}
Z=- 0.001667
,\end{displaymath} (141)


\begin{displaymath}
\phi(r)=\theta(r)-Z
,\end{displaymath} (142)


\begin{displaymath}
\theta(r)={\frac {1}{1000}} {\frac { 2.568+\Xi r+\Phi {r}^{2}}{1+
\Lambda r+\Upsilon {r}^{2}+10 \Phi {r}^{3}}}
,\end{displaymath} (143)


\begin{displaymath}
\Xi= 23.266
,\end{displaymath} (144)


\begin{displaymath}
\Phi= 0.007389
,\end{displaymath} (145)


\begin{displaymath}
\Lambda= 8.723
,\end{displaymath} (146)


\begin{displaymath}
\Upsilon= 0.472
\end{displaymath} (147)

and ${\epsilon(\alpha,\beta)}$ is the correlation energy per particle of the Local Spin Density Approximation(PW92C).



Next: 18.1.28 PW91X: Perdew-Wang 1991 Up: 18.1 Density Functionals Previous: 18.1.26 PW91: PW91=PW91X+PW91C

P.J. Knowles and H.-J. Werner
molpro@tc.bham.ac.uk
Jan 15, 2002