Next: 18.1.37 THGFCFO: Up: 18.1 Density Functionals Previous: 18.1.35 THGFL:


18.1.36 THGFC:

D. J. Tozer, N. C. Handy and W. H. Green, Chem. Phys. Lett. 273, 183 (1997)

Density and gradient dependent first row exchange-correlation functional for closed shell systems. Total energies are improved by adding $DN$, where $N$ is the number of electrons and $D=0.1863$.


\begin{displaymath}
K=
\sum _{i=1}^{n}\omega_{{i}}R_{{i}}X_{{i}}
,\end{displaymath} (200)

where
\begin{displaymath}
n=12
,\end{displaymath} (201)


\begin{displaymath}
R_{{i}}=\rho_{\alpha}^{t_{{i}}}+\rho_{\beta}
^{t_{{i}}}
,\end{displaymath} (202)


\begin{displaymath}
X_{{i}}={\frac {\sigma_{\alpha \alpha}^{v_{
{i}/2}}+\sigma_{\beta \beta}^{v_{{i}/2}}}{{2\rho}^{4v_{{i}}/
3 }}}
,\end{displaymath} (203)


\begin{displaymath}
t
=
[7/6,4/3,3/2,5/3,4/3,3/2,5/3,{\frac {11}{6}},3/2,5/3,{\frac {11}{6}},2]
,\end{displaymath} (204)


\begin{displaymath}
v
=
[0,0,0,0,1,1,1,1,2,2,2,2]
\end{displaymath} (205)

and
$\displaystyle \omega$ $\textstyle =$ $\displaystyle [- 0.864448, 0.565130,- 1.27306, 0.309681,- 0.287658, 0.588767,$  
    $\displaystyle - 0.252700, 0.0223563, 0.0140131,- 0.0826608, 0.0556080,$  
    $\displaystyle - 0.00936227]
.$ (206)



Next: 18.1.37 THGFCFO: Up: 18.1 Density Functionals Previous: 18.1.35 THGFL:

P.J. Knowles and H.-J. Werner
molpro@tc.bham.ac.uk
Jan 15, 2002