Next: 18.1.38 THGFCO: Up: 18.1 Density Functionals Previous: 18.1.36 THGFC:


18.1.37 THGFCFO:

D. J. Tozer, N. C. Handy and W. H. Green, Chem. Phys. Lett. 273, 183 (1997)

Density and gradient dependent first row exchange-correlation functional. The closed- and open-shell parts are fitted to training sets of closed- and open-shell systems independently.


\begin{displaymath}
K=
\sum _{i=1}^{n}\omega_{{i}}R_{{i}}S_{{i}}X_{{i}}Y_{{i}}
,\end{displaymath} (207)

where
\begin{displaymath}
n=20
,\end{displaymath} (208)


\begin{displaymath}
R_{{i}}=\rho_{\alpha}^{t_{{i}}}+\rho_{\beta}
^{t_{{i}}}
,\end{displaymath} (209)


\begin{displaymath}
S_{{i}}=\left ({\frac {\rho_{\alpha}-\rho_{\beta}}{\rho}}\right )^{2 u
_{{i}}}
,\end{displaymath} (210)


\begin{displaymath}
X_{{i}}={\frac {\sigma_{\alpha \alpha}^{v_{
{i}/2}}+\sigma_{\beta \beta}^{v_{{i}/2}}}{{2\rho}^{4v_{{i}}/
3 }}}
,\end{displaymath} (211)


\begin{displaymath}
Y_{{i}}=\left ({\frac {\sigma_{\alpha \alpha}+\sigma_{\beta ...
...qrt {\sigma_{\beta \beta}}}{{\rho}^{8/3
}}}\right )^{w_{{i}}}
,\end{displaymath} (212)


$\displaystyle t
=$ $\textstyle [7/6,4/3,3/2,5/3,4/3,3/2,5/3,{\frac {11}{6}},3/2,5/3,$    
  $\textstyle {\frac {11}{6}},2,
3/2,5/3,{\frac {11}{6}},2,7/6,4/3,3/2,5/3]
,$   (213)


\begin{displaymath}
u
=
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1]
,\end{displaymath} (214)


\begin{displaymath}
v
=
[0,0,0,0,1,1,1,1,2,2,2,2,0,0,0,0,0,0,0,0]
,\end{displaymath} (215)


\begin{displaymath}
w
=
[0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0]
\end{displaymath} (216)

and
$\displaystyle \omega
=$ $\textstyle [- 0.864448, 0.565130,- 1.27306, 0.309681, - 0.287658,$    
  $\textstyle 0.588767,-
0.252700, 0.0223563, 0.0140131,- 0.0826608,$    
  $\textstyle 0.0556080,- 0.00936227,-
0.00677146, 0.0515199,- 0.0874213,$    
  $\textstyle 0.0423827, 0.431940, - 0.691153,-
0.637866, 1.07565]
.$   (217)



Next: 18.1.38 THGFCO: Up: 18.1 Density Functionals Previous: 18.1.36 THGFC:

P.J. Knowles and H.-J. Werner
molpro@tc.bham.ac.uk
Jan 15, 2002