Next: 18.1.30 S: Slater-Dirac Exchange Up: 18.1 Density Functionals Previous: 18.1.28 PW91X: Perdew-Wang 1991


18.1.29 PW92C: Local Spin Density Approximation Correlation Energy

J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992)

Electron-gas correlation energy.


\begin{displaymath}
K=
\rho \epsilon(\rho_{\alpha},\rho_{\beta})
,\end{displaymath} (152)

where
$\displaystyle \epsilon(\alpha,\beta)$ $\textstyle =$ $\displaystyle e(r(\alpha,\beta),T_{{1}},U_{{1}},V_{{1}},W_{{1}
},X_{{1}},Y_{{1}},P_{{1}})$  
  $\textstyle -$ $\displaystyle {{e(r(\alpha,\beta),T_{{3}},U_{{3}},V_
{{3}},W_{{3}},X_{{3}},Y_{{...
...P_{{3}})\omega(\zeta(\alpha,\beta))\left
(1-\zeta^4(\alpha,\beta)\right )}/{c}}$  
  $\textstyle +$ $\displaystyle \left (e(r(
\alpha,\beta),T_{{2}},U_{{2}},V_{{2}},W_{{2}},X_{{2}},Y_{{2}},P_{{2}})\right.$  
  $\textstyle -$ $\displaystyle \left.e(r(\alpha,\beta),T_{{1}},U_{{1}},V_{{1}},W_{{1}},X_{{1}},Y_{{1}},P_{{1
}})\right )\omega(\zeta(\alpha,\beta))\zeta^{4}(\alpha,\beta)
,$ (153)


\begin{displaymath}
r(\alpha,\beta)=\left (\frac {3}{4\pi  
\left (\alpha+\beta\right )} \right )^{1/3}
,\end{displaymath} (154)


\begin{displaymath}
\zeta(\alpha,\beta)={\frac {\alpha-\beta}{\alpha+\beta}}
,\end{displaymath} (155)


\begin{displaymath}
\omega(z)={\frac {\left (1+z\right )^{4/3}+\left (1-z\right )^{4/3}-2}{
2^{4/3}-2}}
,\end{displaymath} (156)


\begin{displaymath}
e(r,t,u,v,w,x,y,p)=-2 t\left (1+ur\right )\ln \left(1+{\fra...
...t
\left (v\sqrt {r}+wr+x{r}^{3/2}+y{r}^{p+1}\right )}}\right)
,\end{displaymath} (157)


\begin{displaymath}
c= 1.709921
,\end{displaymath} (158)


\begin{displaymath}
T
=
[ 0.031091, 0.015545, 0.016887]
,\end{displaymath} (159)


\begin{displaymath}
U
=
[ 0.21370, 0.20548, 0.11125]
,\end{displaymath} (160)


\begin{displaymath}
V
=
[ 7.5957, 14.1189, 10.357]
,\end{displaymath} (161)


\begin{displaymath}
W
=
[ 3.5876, 6.1977, 3.6231]
,\end{displaymath} (162)


\begin{displaymath}
X
=
[ 1.6382, 3.3662, 0.88026]
,\end{displaymath} (163)


\begin{displaymath}
Y
=
[ 0.49294, 0.62517, 0.49671]
\end{displaymath} (164)

and
\begin{displaymath}
P
=
[1,1,1]
.\end{displaymath} (165)

LSDAC and LSDC are aliased to PW92C



Next: 18.1.30 S: Slater-Dirac Exchange Up: 18.1 Density Functionals Previous: 18.1.28 PW91X: Perdew-Wang 1991

P.J. Knowles and H.-J. Werner
molpro@tc.bham.ac.uk
Jan 15, 2002