Next: 18.1.22 PBE: PBE = Up: 18.1 Density Functionals Previous: 18.1.20 MK00B: Exchange Functional


18.1.21 P86:

J. P. Perdew, Phys. Rev. B 33, 8822 (1986)

VWN with gradient correction.


\begin{displaymath}
K=
\rho e+{\frac {{e^{-\Phi}}C(r)\sigma}{d{\rho}^{4/3}}}
,\end{displaymath} (95)

where
\begin{displaymath}
x=\left ({{\frac {3}{4 \pi \rho}}}\right )^{1/6}
,\end{displaymath} (96)


\begin{displaymath}
\zeta={\frac {\rho_{\alpha}-\rho_{\beta}}{\rho}}
,\end{displaymath} (97)


\begin{displaymath}
e=\Lambda+\omega y\left (1+h{\zeta}^{4}\right )
,\end{displaymath} (98)


\begin{displaymath}
y={\frac {9}{8}} \left (1+\zeta\right )^{4/3}+{\frac {9}{8}} \left (1
-\zeta\right )^{4/3}-\frac{9}{4}
,\end{displaymath} (99)


\begin{displaymath}
h={\frac {4\left (\lambda-\Lambda\right )}{9\left ({2}^{1/3}-1\right )\omega}}-1
,\end{displaymath} (100)


\begin{displaymath}
\Lambda=q(k_{{1}},l_{{1}},m_{{1}},n_{{1}})
,\end{displaymath} (101)


\begin{displaymath}
\lambda=q(k_{{2}},l_{{2}},m_{{2}},n_{{2}})
,\end{displaymath} (102)


\begin{displaymath}
\omega=q(k_{{3}},l_{{3}},m_{{3}},n_{{3}})
,\end{displaymath} (103)


$\displaystyle q(A,p,c,d)=$ $\textstyle A\left (\ln \left({\frac {{x}^{2}}{X(x,c,d)}}\right )
+\frac{2 c}{Q(c,d)}\text{arctan}\left ({
\frac {Q(c,d)}{2 x+c}}\right )\right.$    
  $\textstyle \left.-\frac{cp}{X(p,c,d)}\left (\ln \left ({
\frac {\left (x-p\righ...
...t (c+2 p\right )}{Q(c,d)}
\arctan({\frac {Q(c,d)}{2 x+c}})\right )
\right )
,$   (104)


\begin{displaymath}
Q(c,d)=\sqrt {4 d-{c}^{2}}
,\end{displaymath} (105)


\begin{displaymath}
X(i,c,d)={i}^{2}+ci+d
,\end{displaymath} (106)


\begin{displaymath}
\Phi= 0.007390075 {\frac {z\sqrt {\sigma}}{C(r){\rho}^{7/6}}}
,\end{displaymath} (107)


\begin{displaymath}
d={2}^{1/3}\sqrt {\left (1/2+\zeta/2\right )^{5/3}+\left (1/2-\zeta/2\right )^{5/3}}
,\end{displaymath} (108)


\begin{displaymath}
C(r)= 0.001667+{\frac { 0.002568+\alpha r+\beta {r}^{2}}{1+\xi r+
\delta {r}^{2}+10000 \beta {r}^{3}}}
,\end{displaymath} (109)


\begin{displaymath}
z= 0.11
,\end{displaymath} (110)


\begin{displaymath}
\alpha= 0.023266
,\end{displaymath} (111)


\begin{displaymath}
\beta= 0.000007389
,\end{displaymath} (112)


\begin{displaymath}
\xi= 8.723
,\end{displaymath} (113)


\begin{displaymath}
\delta= 0.472
,\end{displaymath} (114)


\begin{displaymath}
k
=
[ 0.0310907, 0.01554535,-1/\left (6{\pi }\right )^{2}]
,\end{displaymath} (115)


\begin{displaymath}
l
=
[- 0.10498,- 0.325,- 0.0047584]
,\end{displaymath} (116)


\begin{displaymath}
m
=
[ 3.72744, 7.06042, 1.13107]
\end{displaymath} (117)

and
\begin{displaymath}
n
=
[ 12.9352, 18.0578, 13.0045]
.\end{displaymath} (118)



Next: 18.1.22 PBE: PBE = Up: 18.1 Density Functionals Previous: 18.1.20 MK00B: Exchange Functional

P.J. Knowles and H.-J. Werner
molpro@tc.bham.ac.uk
Jan 15, 2002