Next: 18.1.15 HCTH120: Up: 18.1 Density Functionals Previous: 18.1.13 G96: Gill's 1996


18.1.14 HCTH93:

F. A. Hamprecht, A. J. Cohen, D. J. Tozer and N. C. Handy, J. Chem. Phys. 109, 6264 (1998)

The original HCTH functional with parameters optimized on a set of 93 training systems.


$\displaystyle K$ $\textstyle =$ $\displaystyle \left (\epsilon(\rho_{\alpha},\rho_{\beta})-\epsilon(\rho_{\alpha...
...1}})+A_{{3}}\eta^{3}
(d,\lambda_{{1}})+A_{{4}}\eta^{4}(d,\lambda_{{1}})\right )$  
  $\textstyle +$ $\displaystyle \sum_s
\epsilon(\rho_{s},0)\left (B_{{0}}+B_{{1}}\eta(\chi_{s}^
{...
...chi_{s}^{
2},\lambda_{{2}})+B_{{4}}\eta^{4}(\chi_{s}^{2},\lambda_{{2}})\right )$  
    $\displaystyle -\frac{3}{2}\left (\frac{3}{4\pi}\right )^{1/3}\rho_{s}^{4/3}
\le...
...hi_{s}^{2},\lambda_{{3}})+C_{{4}}
\eta^4(\chi_{s}^{2},\lambda_{{3}})
\right )
,$ (65)

where
\begin{displaymath}
d=(\chi_{\alpha}^{2}+\chi_{\beta}^{2})/{2}
,\end{displaymath} (66)


\begin{displaymath}
\eta(\theta,\mu)={\frac {\mu \theta}{1+\mu \theta}}
,\end{displaymath} (67)


\begin{displaymath}
A
=
[ 0.72997, 3.35287,- 11.543, 8.08564,- 4.47857]
,\end{displaymath} (68)


\begin{displaymath}
B
=
[ 0.222601,- 0.0338622,- 0.012517,- 0.802496, 1.55396]
,\end{displaymath} (69)


\begin{displaymath}
C
=
[ 1.0932,- 0.744056, 5.5992,- 6.78549, 4.49357]
,\end{displaymath} (70)


\begin{displaymath}
\lambda
=
[ 0.006, 0.2, 0.004]
\end{displaymath} (71)

and ${\epsilon(\alpha,\beta)}$ is the correlation energy per particle of the Local Spin Density Approximation(PW92C).



Next: 18.1.15 HCTH120: Up: 18.1 Density Functionals Previous: 18.1.13 G96: Gill's 1996

P.J. Knowles and H.-J. Werner
molpro@tc.bham.ac.uk
Jan 15, 2002