Next: 18.1.10 BRUEG: Becke-Roussel Exchange Up: 18.1 Density Functionals Previous: 18.1.8 B97R: B97 Re-parameterized


18.1.9 BR: Becke-Roussel Exchange Functional

A. D. Becke and M. R. Roussel,Phys. Rev. A 39, 3761 (1989)


\begin{displaymath}
K=\frac{1}{2}\sum_s \rho_s U_s
,\end{displaymath} (47)

where
\begin{displaymath}
U_s=-(1-e^{-x}-xe^{-x}/2)/b
,\end{displaymath} (48)


\begin{displaymath}
b=\frac{x^3e^{-x}}{8\pi\rho_s}
\end{displaymath} (49)

and $x$ is defined by the nonlinear equation
\begin{displaymath}
\frac{xe^{-2x/3}}{x-2}=\frac{2\pi^{2/3}\rho_s^{5/3}}{3Q_s}
,\end{displaymath} (50)

where
\begin{displaymath}
Q_s=(\upsilon_s-2\gamma D_s)/6
,\end{displaymath} (51)


\begin{displaymath}
D_s=\tau_s-\frac{\sigma_{ss}}{4\rho_s}
\end{displaymath} (52)

and
\begin{displaymath}
\gamma=1.
\end{displaymath} (53)



P.J. Knowles and H.-J. Werner
molpro@tc.bham.ac.uk
Jan 15, 2002