Next: 18.1.19 MK00: Exchange Functional Up: 18.1 Density Functionals Previous: 18.1.17 LTA: Local Approximation


18.1.18 LYP: Lee, Yang and Parr Correlation Functional

C. Lee, W. Yang and R. G. Parr, Phys. Rev. B 37, 785(1988); B. Miehlich, A. Savin, H. Stoll and H. Preuss, Chem. Phys. Letters 157, 200 (1989)


$\displaystyle K$ $\textstyle =$ $\displaystyle 4 {\frac {A\rho_{\alpha}\rho_{\beta}Z}{\rho}}+AB\omega\sigma\left (
\rho_{\alpha}\rho_{\beta}\left (47-7 \delta\right )/18-2{\rho}^
{2}/3\right )$  
  $\textstyle +$ $\displaystyle \sum_s
AB\omega \biggl (\rho_{s}\rho_{\bar s}\left (8 {2}^{2/3}...
...}-
{\frac {\left (\delta-11\right )\rho_{s}\sigma_{ss}}{9\rho}}\right )\biggr..$  
    $\displaystyle \biggl.+
\left (2{\rho}^{2}/3-\rho_{s}^{2}\right )
\sigma_{\bar s \bar s}\biggr )
,$ (83)

where
\begin{displaymath}
\omega={e^{-{\frac {c}{{\rho}^{1/3}}}}}Z{\rho}^{-11/3}
,\end{displaymath} (84)


\begin{displaymath}
\delta={\frac {c+dZ}{{\rho}^{1/3}}}
,\end{displaymath} (85)


\begin{displaymath}
B= 0.04918
,\end{displaymath} (86)


\begin{displaymath}
A= 0.132
,\end{displaymath} (87)


\begin{displaymath}
c= 0.2533
,\end{displaymath} (88)


\begin{displaymath}
d= 0.349
,\end{displaymath} (89)


\begin{displaymath}
e=\frac{3}{10}\left (3\pi^2\right )^{2/3}
\end{displaymath} (90)

and
\begin{displaymath}
Z=\left (1+{\frac {d}{{\rho}^{1/3}}}\right )^{-1}
.\end{displaymath} (91)



Next: 18.1.19 MK00: Exchange Functional Up: 18.1 Density Functionals Previous: 18.1.17 LTA: Local Approximation

P.J. Knowles and H.-J. Werner
molpro@tc.bham.ac.uk
Jan 15, 2002