Next: 18.1.32 TH2: Up: 18.1 Density Functionals Previous: 18.1.30 S: Slater-Dirac Exchange


18.1.31 TH1:

D. J. Tozer and N. C. Handy, J. Chem. Phys. 108, 2545 (1998)

Density and gradient dependent first row exchange-correlation functional.


\begin{displaymath}
K=
\sum _{i=1}^{n}\omega_{{i}}R_{{i}}S_{{i}}X_{{i}}Y_{{i}}
,\end{displaymath} (168)

where
\begin{displaymath}
n=21
,\end{displaymath} (169)


\begin{displaymath}
R_{{i}}=\rho_{\alpha}^{t_{{i}}}+\rho_{\beta}
^{t_{{i}}}
,\end{displaymath} (170)


\begin{displaymath}
S_{{i}}=\left ({\frac {\rho_{\alpha}-\rho_{\beta}}{\rho}}\right )^{2 u
_{{i}}}
,\end{displaymath} (171)


\begin{displaymath}
X_{{i}}={\frac {\sigma_{\alpha \alpha}^{v_{
{i}/2}}+\sigma_{\beta \beta}^{v_{{i}/2}}}{2{\rho}^{4v_{{i}}/
3 }}}
,\end{displaymath} (172)


\begin{displaymath}
Y_{{i}}=\left ({\frac {\sigma_{\alpha \alpha}+\sigma_{\beta ...
...qrt {\sigma_{\beta \beta}}}{{\rho}^{8/3
}}}\right )^{w_{{i}}}
,\end{displaymath} (173)


$\displaystyle t
=$ $\textstyle [7/6,4/3,3/2,5/3,4/3,3/2,5/3,{\frac {11}{6}},3/2,5/3,$    
  $\textstyle {\frac {11}{6}},2,
3/2,5/3,{\frac {11}{6}},2,7/6,4/3,3/2,5/3,1]
,$   (174)


\begin{displaymath}
u
=
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0]
,\end{displaymath} (175)


\begin{displaymath}
v
=
[0,0,0,0,1,1,1,1,2,2,2,2,0,0,0,0,0,0,0,0,0]
,\end{displaymath} (176)


\begin{displaymath}
w
=
[0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0]
\end{displaymath} (177)

and
$\displaystyle \omega$ $\textstyle =$ $\displaystyle [- 0.728255, 0.331699,- 1.02946, 0.235703,- 0.0876221, 0.140854,$  
    $\displaystyle 0.0336982,- 0.0353615, 0.00497930,- 0.0645900, 0.0461795,$  
    $\displaystyle - 0.00757191,
- 0.00242717, 0.0428140,- 0.0744891, 0.0386577,$  
    $\displaystyle - 0.352519, 2.19805,-
3.72927, 1.94441, 0.128877]
.$ (178)



Next: 18.1.32 TH2: Up: 18.1 Density Functionals Previous: 18.1.30 S: Slater-Dirac Exchange

P.J. Knowles and H.-J. Werner
molpro@tc.bham.ac.uk
Jan 15, 2002