r=5.6 geometry={nosym; he1; he2,he1,r} basis=avqz !wf records ca=2101.2 cb=2102.2 !monomer A dummy,he2 {hf; save,$ca} sapt;monomerA !monomer B dummy,he1 {hf; start,atdens; save,$cb} sapt;monomerB !interaction contributions sapt;intermol,ca=$ca,cb=$cb
Here the sapt;monomerA/B
store some informations about the
two monomers which are needed in the subsequent SAPT calculation
invoked by sapt;intermol
. The individual interaction energy
terms are stored (in millihartree)
in distinct variables and may be collected
in arrays for producing potential energy surfaces. For example
the input
geometry={nosym; he1; he2,he1,r} basis=avtz !wf records ca=2101.2 cb=2102.2 !distances dist=[4.5,5.0,5.5,5.6,6.0,6.5,7.0] do i=1,#dist r=dist(i) !monomer A dummy,he2 {hf; save,$ca} sapt;monomerA !monomer B dummy,he1 {hf; start,atdens; save,$cb} sapt;monomerB !interaction contributions sapt;intermol,ca=$ca,cb=$cb elst(i)=E1pol; exch(i)=E1ex ind(i)=E2ind; exind(i)=E2exind disp(i)=E2disp; exdisp(i)=E2exdisp etot(i)=E12tot data,truncate,$ca enddo {table,dist,elst,exch,ind,exind,disp,exdisp,etot ftyp,d,d,d,d,d,d,d,d,d plot}
yields the plot
Currently SAPT only accepts single-determinant wave functions for the monomers, i.e. from Hartree-Fock or Kohn-Sham DFT (see next section) calculations. This means that if Hartree-Fock wave functions are used for monomer, the following quantity is obtained (zero in superscript denotes that no intramonomer correlation is accounted for) [1].