Next:
5 HOW TO READ
Up:
manual
Previous:
4 References
Contents
1 Introduction to MOLPRO
2 MOLPRO on the WWW
3 Release Notes
4 References
5 HOW TO READ THIS MANUAL
6 GENERAL PROGRAM STRUCTURE
6.1 Running MOLPRO
6.2 Input format
6.3 Input structure
6.4 Expressions
6.5 Intrinsic functions
6.6 Files
6.7 Records
6.8 Restart
6.9 Data set manipulation
6.10 Memory allocation
6.11 Variables
6.12 Multiple passes through the input
6.13 Symmetry
6.14 Defining the wavefunction
6.15 Defining orbital subspaces
6.16 Selecting orbitals and density matrices (ORBITAL, DENSITY)
6.17 Summary of keywords known to the controlling program
6.18 Default procedures
7 INTRODUCTORY EXAMPLES
7.1 Using the molpro command
7.2 Simple SCF calculations
7.3 Geometry optimizations
7.4 CCSD(T)
7.5 CASSCF and MRCI
7.6 Tables
7.7 Procedures
7.8 Using default Procedures
7.9 Do loops
8 PROGRAM CONTROL
8.1 Starting a job (***)
8.2 Ending a job (--)
8.3 Restarting a job (RESTART)
8.4 Including secondary input files (INCLUDE)
8.5 Allocating dynamic memory (MEMORY)
8.6 DO loops (DO/ENDDO)
8.7 Branching (IF/ELSEIF/ENDIF)
8.8 Procedures (PROC/ENDPROC)
8.9 Text cards (TEXT)
8.10 Checking the program status (STATUS)
8.11 Global Thresholds (GTHRESH)
8.12 Global Print Options (GPRINT/NOGPRINT)
8.13 One-electron operators and expectation values (GEXPEC)
9 FILE HANDLING
9.1 FILE
9.2 DELETE
9.3 ERASE
9.4 DATA
9.5 Assigning punch files (PUNCH)
9.6 MOLPRO system parameters (GPARAM)
10 VARIABLES
10.1 Setting variables
10.2 String variables
10.3 Macro definitions using string variables
10.4 Indexed Variables (Vectors)
10.5 Vector operations
10.6 Special variables
10.7 Displaying variables
10.8 Clearing variables
11 TABLES AND PLOTTING
11.1 Tables
11.2 Plotting
12 INTEGRAL-DIRECT CALCULATIONS (GDIRECT)
12.1 Example for integral-direct calculations
13 GEOMETRY SPECIFICATION AND INTEGRATION
13.1 Sorted integrals
13.2 Symmetry specification
13.3 Geometry specifications
13.4 Writing Gaussian, XMol or MOLDEN input (PUT)
13.5 Geometry Files
13.6 Lattice of point charges
13.7 Redefining atomic masses
13.8 Dummy centres
14 BASIS INPUT
14.1 Cartesian and spherical harmonic basis functions
14.2 The basis set library
14.3 Default basis sets
14.4 Default basis sets for individual atoms
14.5 Primitive set definition
14.6 Contracted set definitions
14.7 Examples
15 EFFECTIVE CORE POTENTIALS
15.1 Input from ECP library
15.2 Explicit input for ECPs
15.3 Example for explicit ECP input
15.4 Example for ECP input from library
16 CORE POLARIZATION POTENTIALS
16.1 Input options
16.2 Example for ECP/CPP
17 THE SCF PROGRAM
17.1 Defining the wavefunction
17.2 Saving the final orbitals
17.3 Starting orbitals
17.4 Rotating pairs of orbitals
17.5 Using additional point-group symmetry
17.6 Expectation values
17.7 Miscellaneous options
18 THE DENSITY FUNCTIONAL PROGRAM
18.1 Density Functionals
18.2 Options
18.3 Examples
18.4 Numerical integration grid control (GRID)
19 ORBITAL LOCALIZATION
19.1 Defining the input orbitals (ORBITAL)
19.2 Saving the localized orbitals (SAVE)
19.3 Choosing the localization method (METHOD)
19.4 Delocalization of orbitals (DELOCAL)
19.5 Localizing AOs(LOCAO)
19.6 Selecting the orbital space
19.7 Ordering of localized orbitals
19.8 Localization thresholds (THRESH)
19.9 Printing options (PRINT)
20 THE MCSCF PROGRAM MULTI
20.1 Structure of the input
20.2 Defining the orbital subspaces
20.3 Defining the optimized states
20.4 Defining the configuration space
20.5 Restoring and saving the orbitals and CI vectors
20.6 Selecting the optimization methods
20.7 Calculating expectation values
20.8 Miscellaneous options
20.9 Coupled-perturbed MCSCF
20.10 Optimizing valence bond wavefunctions
20.11 Hints and strategies
20.12 Examples
21 THE CI PROGRAM
21.1 Introduction
21.2 Specifying the wavefunction
21.3 Additional reference symmetries
21.4 Options
21.5 Miscellaneous thresholds
21.6 Print options
21.7 Examples
22 MULTIREFERENCE RAYLEIGH SCHRÖDINGER PERTURBATION THEORY
22.1 Introduction
22.2 Coupling MRCI and MRPT2
22.3 Excited state calculations
22.4 Modified Fock-operators in the zeroth-order Hamiltonian.
22.5 Level shifts
22.6 Integral direct calculations
22.7 Options for CASPT2 and CASPT3
23 MØLLER PLESSET PERTURBATION THEORY
23.1 Expectation values for MP2
23.2 Coulomb-fitting MP2 (CF-MP2, RI-MP2)
24 THE CLOSED SHELL CCSD PROGRAM
24.1 Coupled-cluster, CCSD
24.2 Quadratic configuration interaction, QCI
24.3 Brueckner coupled-cluster calculations, BCCD
24.4 Singles-doubles configuration interaction, CISD
24.5 The DIIS directive
24.6 Examples
24.7 Excited states using linear response (CCSD-LR, EOM-CCSD)
25 OPEN-SHELL COUPLED CLUSTER THEORIES
26 LOCAL CORRELATION TREATMENTS
26.1 Introduction
26.2 Getting started
26.3 Doing it right
26.4 Further commands
26.5 Options
26.6 Additional options available on the ATTENUATE card
27 THE FULL CI PROGRAM
27.1 Defining the orbitals
27.2 Occupied orbitals
27.3 Frozen-core orbitals
27.4 Defining the state symmetry
27.5 Printing options
27.6 Interface to other programs
27.7 Example
28 PROPERTIES AND EXPECTATION VALUES
28.1 The property program
28.2 Distributed multipole analysis
28.3 Mulliken population analysis
28.4 Finite field calculations
28.5 Relativistic corrections
28.6 CUBE -- dump density or orbital values
29 DIABATIC ORBITALS
30 NON ADIABATIC COUPLING MATRIX ELEMENTS
30.1 The DDR procedure
31 QUASI-DIABATIZATION
32 THE VB PROGRAM CASVB
32.1 Structure of the input
32.2 Defining the CASSCF wavefunction
32.3 Other wavefunction directives
32.4 Defining the valence bond wavefunction
32.5 Recovering CASSCF CI vector and VB wavefunction
32.6 Saving the VB wavefunction
32.7 Specifying a guess
32.8 Permuting orbitals
32.9 Optimization control
32.10 Point group symmetry and constraints
32.11 Wavefunction analysis
32.12 Controlling the amount of output
32.13 Service mode
32.14 Examples
33 SPIN-ORBIT-COUPLING
33.1 Introduction
33.2 Calculation of SO integrals
33.3 Calculation of individual SO matrix elements
33.4 Calculation and diagonalization of the entire SO-matrix
33.5 Modifying the unperturbed energies
33.6 Examples
34 ENERGY GRADIENTS AND GEOMETRY OPTIMIZATION
34.1 The gradient program
34.2 Geometry optimization
34.3 Examples
34.4 Vibrational Frequencies (FREQUENCIES)
35 ORBITAL MERGING
35.1 Defining the input orbitals (ORBITAL)
35.2 Moving orbitals to the output set (MOVE)
35.3 Adding orbitals to the output set (ADD)
35.4 Defining extra symmetries (EXTRA)
35.5 Defining offsets in the output set (OFFSET)
35.6 Projecting orbitals (PROJECT)
35.7 Symmetric orthonormalization (ORTH)
35.8 Schmidt orthonormalization (SCHMIDT)
35.9 Rotating orbitals (ROTATE)
35.10 Initialization of a new output set (INIT)
35.11 Saving the merged orbitals
35.12 Printing options (PRINT)
35.13 Examples
36 MATRIX OPERATIONS
36.1 Calling the matrix facility (MATROP)
36.2 Loading matrices (LOAD)
36.3 Saving matrices (SAVE)
36.4 Adding matrices (ADD)
36.5 Trace of a matrix or the product of two matrices (TRACE)
36.6 Setting variables (SET)
36.7 Multiplying matrices (MULT)
36.8 Transforming operators (TRAN)
36.9 Transforming density matrices into the MO basis (DMO)
36.10 Diagonalizing a matrix DIAG
36.11 Generating natural orbitals (NATORB)
36.12 Forming an outer product of two vectors (OPRD)
36.13 Forming a closed-shell density matrix (DENS)
36.14 Computing a fock matrix (FOCK)
36.15 Computing a coulomb operator (COUL)
36.16 Computing an exchange operator (EXCH)
36.17 Printing matrices (PRINT)
36.18 Printing diagonal elements of a matrix (PRID)
36.19 Printing orbitals (PRIO)
36.20 Assigning matrix elements to a variable (ELEM)
36.21 Reading a matrix from the input file (READ)
36.22 Writing a matrix to an ASCII file (WRITE)
36.23 Examples
36.24 Exercise: SCF program
A. Installation of MOLPRO
A..1 Obtaining the distribution materials
A..2 Installation of pre-built binaries
A..3 Installation from source files
B. Recent Changes
B..1 New features of MOLPRO2002
B..2 Features that were new in MOLPRO2000
B..3 Facilities that were new in MOLPRO98
Index
P.J. Knowles and H.-J. Werner
molpro@tc.bham.ac.uk
Jan 15, 2002