Next:
1 HOW TO READ
Up:
manual
Previous:
References
Contents
Introduction to MOLPRO
MOLPRO on the WWW
References
1 HOW TO READ THIS MANUAL
2 RUNNING MOLPRO
2.1 Options
2.2 Running MOLPRO on parallel computers
3 DEFINITION OF MOLPRO INPUT LANGUAGE
3.1 Input format
3.2 Commands
3.3 Directives
3.4 Global directives
3.5 Options
3.6 Data
3.7 Expressions
3.8 Intrinsic functions
3.9 Variables
3.10 Procedures
4 GENERAL PROGRAM STRUCTURE
4.1 Input structure
4.2 Files
4.3 Records
4.4 Restart
4.5 Data set manipulation
4.6 Memory allocation
4.7 Multiple passes through the input
4.8 Symmetry
4.9 Defining the wavefunction
4.10 Defining orbital subspaces
4.11 Selecting orbitals and density matrices (ORBITAL, DENSITY)
4.12 Summary of keywords known to the controlling program
4.13 MOLPRO help
5 INTRODUCTORY EXAMPLES
5.1 Using the molpro command
5.2 Simple SCF calculations
5.3 Geometry optimizations
5.4 CCSD(T)
5.5 CASSCF and MRCI
5.6 Tables
5.7 Procedures
5.8 Do loops
6 PROGRAM CONTROL
6.1 Starting a job (***)
6.2 Ending a job (--)
6.3 Restarting a job (RESTART)
6.4 Including secondary input files (INCLUDE)
6.5 Allocating dynamic memory (MEMORY)
6.6 DO loops (DO/ENDDO)
6.7 Branching (IF/ELSEIF/ENDIF)
6.8 Procedures (PROC/ENDPROC)
6.9 Text cards (TEXT)
6.10 Checking the program status (STATUS)
6.11 Global Thresholds (GTHRESH)
6.12 Global Print Options (GPRINT/NOGPRINT)
6.13 One-electron operators and expectation values (GEXPEC)
7 FILE HANDLING
7.1 FILE
7.2 DELETE
7.3 ERASE
7.4 DATA
7.5 Assigning punch files (PUNCH)
7.6 MOLPRO system parameters (GPARAM)
8 VARIABLES
8.1 Setting variables
8.2 Indexed variables
8.3 String variables
8.4 System variables
8.5 Macro definitions using string variables
8.6 Indexed Variables (Vectors)
8.7 Vector operations
8.8 Special variables
8.9 Displaying variables
8.10 Clearing variables
8.11 Reading variables from an external file
9 TABLES AND PLOTTING
9.1 Tables
9.2 Plotting
10 INTEGRAL-DIRECT CALCULATIONS (GDIRECT)
10.1 Example for integral-direct calculations
11 DENSITY FITTING
11.1 Options for density fitting
12 GEOMETRY SPECIFICATION AND INTEGRATION
12.1 Sorted integrals
12.2 Symmetry specification
12.3 Geometry specifications
12.4 Writing Gaussian, XMol or MOLDEN input (PUT)
12.5 Geometry Files
12.6 Lattice of point charges
12.7 Redefining and printing atomic masses
12.8 Dummy centres
13 BASIS INPUT
13.1 Overview: sets and the basis library
13.2 Cartesian and spherical harmonic basis functions
13.3 The basis set library
13.4 Default basis sets
13.5 Default basis sets for individual atoms
13.6 Primitive set definition
13.7 Contracted set definitions
13.8 Examples
14 EFFECTIVE CORE POTENTIALS
14.1 Input from ECP library
14.2 Explicit input for ECPs
14.3 Example for explicit ECP input
14.4 Example for ECP input from library
15 CORE POLARIZATION POTENTIALS
15.1 Input options
15.2 Example for ECP/CPP
16 RELATIVISTIC CORRECTIONS
16.1 Using the Douglas-Kroll-Hess Hamiltonian
16.2 Example for computing relativistic corrections
17 THE SCF PROGRAM
17.1 Options
17.2 Defining the wavefunction
17.3 Saving the final orbitals
17.4 Starting orbitals
17.5 Rotating pairs of orbitals
17.6 Using additional point-group symmetry
17.7 Expectation values
17.8 Polarizabilities
17.9 Miscellaneous directives
18 THE DENSITY FUNCTIONAL PROGRAM
18.1 Options
18.2 Directives
18.3 Numerical integration grid control (GRID)
18.4 Density Functionals
18.5 Examples
19 ORBITAL LOCALIZATION
19.1 Defining the input orbitals (ORBITAL)
19.2 Saving the localized orbitals (SAVE)
19.3 Choosing the localization method (METHOD)
19.4 Delocalization of orbitals (DELOCAL)
19.5 Localizing AOs(LOCAO)
19.6 Selecting the orbital space
19.7 Ordering of localized orbitals
19.8 Localization thresholds (THRESH)
19.9 Options for PM localization (PIPEK)
19.10 Printing options (PRINT)
20 THE MCSCF PROGRAM MULTI
20.1 Structure of the input
20.2 Defining the orbital subspaces
20.3 Defining the optimized states
20.4 Defining the configuration space
20.5 Restoring and saving the orbitals and CI vectors
20.6 Selecting the optimization methods
20.7 Calculating expectation values
20.8 Miscellaneous options
20.9 Coupled-perturbed MCSCF
20.10 Optimizing valence bond wavefunctions
20.11 Hints and strategies
20.12 Examples
21 THE CI PROGRAM
21.1 Introduction
21.2 Specifying the wavefunction
21.3 Options
21.4 Miscellaneous thresholds
21.5 Print options
21.6 Examples
22 MULTIREFERENCE RAYLEIGH SCHRÖDINGER PERTURBATION THEORY
22.1 Introduction
22.2 Excited state calculations
22.3 Multi-State CASPT2
22.4 Modified Fock-operators in the zeroth-order Hamiltonian.
22.5 Level shifts
22.6 Integral direct calculations
22.7 CASPT2 gradients
22.8 Coupling MRCI and MRPT2: The CIPT2 method
22.9 Further options for CASPT2 and CASPT3
23 MØLLER PLESSET PERTURBATION THEORY
23.1 Expectation values for MP2
23.2 Polarizabilities and second-order properties for MP2
23.3 CPHF for gradients, expectation values and polarizabilities
23.4 Density-fitting MP2 (DF-MP2, RI-MP2)
23.5 Spin-component scaled MP2 (SCS-MP2)
24 THE CLOSED SHELL CCSD PROGRAM
24.1 Coupled-cluster, CCSD
24.2 Quadratic configuration interaction, QCI
24.3 Brueckner coupled-cluster calculations, BCCD
24.4 Singles-doubles configuration interaction, CISD
24.5 The DIIS directive
24.6 Examples
24.7 Saving the density matrix
24.8 Natural orbitals
25 EXCITED STATES WITH EQUATION-OF-MOTION CCSD (EOM-CCSD)
25.1 Options for EOM
25.2 Options for EOMPAR card
25.3 Options for EOMPRINT card
25.4 Examples
25.5 Excited states with CIS
25.6 First- and second-order properties for CCSD
26 OPEN-SHELL COUPLED CLUSTER THEORIES
27 The MRCC program of M. Kallay (MRCC)
27.1 Installing MRCC
27.2 Running MRCC
28 SMILES
28.1 INTERNAL BASIS SETS
28.2 EXTERNAL BASIS SETS
29 LOCAL CORRELATION TREATMENTS
29.1 Introduction
29.2 Getting started
29.3 Summary of options
29.4 Summary of directives
29.5 General Options
29.6 Options for selection of domains
29.7 Options for selection of pair classes
29.8 Directives
29.9 Doing it right
29.10 Density-fitted LMP2 (DF-LMP2) and coupled cluster (DF-LCCSD(T0))
30 EXPLICITLY CORRELATED METHODS
30.1 Reference functions
30.2 Wave function Ansätze
30.3 The correlation factor
30.4 The projector
30.5 RI Approximations
30.6 Basis sets
30.7 Symmetry
30.8 Options
30.9 Choosing the ansatz and the level of approximation
30.10 CABS Singles correction
30.11 CCSD(T)-F12
30.12 DF-LMP2-F12 calculations with local approximations
30.13 Variables set by the F12 programs
31 THE FULL CI PROGRAM
31.1 Defining the orbitals
31.2 Occupied orbitals
31.3 Frozen-core orbitals
31.4 Defining the state symmetry
31.5 Printing options
31.6 Interface to other programs
31.7 Example
32 SYMMETRY-ADAPTED INTERMOLECULAR PERTURBATION THEORY
32.1 Introduction
32.2 First example
32.3 DFT-SAPT
32.4 High order terms
32.5 Density fitting
32.6 Options
33 PROPERTIES AND EXPECTATION VALUES
33.1 The property program
33.2 Distributed multipole analysis
33.3 Mulliken population analysis
33.4 Natural Bond Orbital Analysis
33.5 Finite field calculations
33.6 Relativistic corrections
33.7 CUBE -- dump density or orbital values
33.8 GOPENMOL -- calculate grids for visualization in gOpenMol
34 DIABATIC ORBITALS
35 NON ADIABATIC COUPLING MATRIX ELEMENTS
35.1 The DDR procedure
36 QUASI-DIABATIZATION
37 THE VB PROGRAM CASVB
37.1 Structure of the input
37.2 Defining the CASSCF wavefunction
37.3 Other wavefunction directives
37.4 Defining the valence bond wavefunction
37.5 Recovering CASSCF CI vector and VB wavefunction
37.6 Saving the VB wavefunction
37.7 Specifying a guess
37.8 Permuting orbitals
37.9 Optimization control
37.10 Point group symmetry and constraints
37.11 Wavefunction analysis
37.12 Controlling the amount of output
37.13 Further facilities
37.14 Service mode
37.15 Examples
38 SPIN-ORBIT-COUPLING
38.1 Introduction
38.2 Calculation of SO integrals
38.3 Calculation of individual SO matrix elements
38.4 Calculation and diagonalization of the entire SO-matrix
38.5 Modifying the unperturbed energies
38.6 Examples
39 ENERGY GRADIENTS
39.1 Analytical energy gradients
39.2 Numerical gradients
39.3 Saving the gradient in a variables
40 GEOMETRY OPTIMIZATION (OPTG)
40.1 Options
40.2 Directives for OPTG
40.3 Using the SLAPAF program for geometry optimization
40.4 Examples
41 VIBRATIONAL FREQUENCIES (FREQUENCIES)
41.1 Options
41.2 Printing options (PRINT)
41.3 Saving the hessian and other information (SAVE)
41.4 Restarting a hessian/Frequency calculation (START)
41.5 Coordinates for numerical hessian calculations (COORD)
41.6 Stepsizes for numerical hessian calculations (STEP)
41.7 Numerical hessian using energy variables (VARIABLE)
41.8 Thermodynamical properties (THERMO)
41.9 Examples
42 MINIMIZATION OF FUNCTIONS
42.1 Examples
43 POTENTIAL ENERGY SURFACES (SURF)
43.1 Options
43.2 Multi-level calculations
43.3 Restart capabilities
43.4 Recomendations
43.5 Standard Problems
44 THE VSCF PROGRAM (VSCF)
44.1 Options
44.2 Standard Problems
45 THE VCI PROGRAM (VCI)
45.1 Options
45.2 Recommendations
45.3 Examples
46 THE COSMO MODEL
46.1 BASIC THEORY
47 QM/MM INTERFACES
47.1 Chemshell
48 ORBITAL MERGING
48.1 Defining the input orbitals (ORBITAL)
48.2 Moving orbitals to the output set (MOVE)
48.3 Adding orbitals to the output set (ADD)
48.4 Defining extra symmetries (EXTRA)
48.5 Defining offsets in the output set (OFFSET)
48.6 Projecting orbitals (PROJECT)
48.7 Symmetric orthonormalization (ORTH)
48.8 Schmidt orthonormalization (SCHMIDT)
48.9 Rotating orbitals (ROTATE)
48.10 Initialization of a new output set (INIT)
48.11 Saving the merged orbitals
48.12 Printing options (PRINT)
48.13 Examples
49 MATRIX OPERATIONS
49.1 Calling the matrix facility (MATROP)
49.2 Loading matrices (LOAD)
49.3 Saving matrices (SAVE)
49.4 Adding matrices (ADD)
49.5 Trace of a matrix or the product of two matrices (TRACE)
49.6 Setting variables (SET)
49.7 Multiplying matrices (MULT)
49.8 Transforming operators (TRAN)
49.9 Transforming density matrices into the MO basis (DMO)
49.10 Diagonalizing a matrix DIAG
49.11 Generating natural orbitals (NATORB)
49.12 Forming an outer product of two vectors (OPRD)
49.13 Combining matrix columns (ADDVEC)
49.14 Forming a closed-shell density matrix (DENS)
49.15 Computing a fock matrix (FOCK)
49.16 Computing a coulomb operator (COUL)
49.17 Computing an exchange operator (EXCH)
49.18 Printing matrices (PRINT)
49.19 Printing diagonal elements of a matrix (PRID)
49.20 Printing orbitals (PRIO)
49.21 Assigning matrix elements to a variable (ELEM)
49.22 Reading a matrix from the input file (READ)
49.23 Writing a matrix to an ASCII file (WRITE)
49.24 Examples
49.25 Exercise: SCF program
Bibliography
A. Installation Guide
A..1 Obtaining the distribution materials
A..2 Installation of pre-built binaries
A..3 Installation from source files
B. Recent Changes
B..1 New features of MOLPRO2008.1
B..2 New features of MOLPRO2006.1
B..3 New features of MOLPRO2002.6
B..4 New features of MOLPRO2002
B..5 Features that were new in MOLPRO2000
B..6 Facilities that were new in MOLPRO98
C. Density functional descriptions
C..1 B86: X
C..2 B86MGC: X with Modified Gradient Correction
C..3 B86R: X Re-optimised
C..4 B88: Becke 1988 Exchange Functional
C..5 B88C: Becke 1988 Correlation Functional
C..6 B95: Becke 1995 Correlation Functional
C..7 B97DF: Density functional part of B97
C..8 B97RDF: Density functional part of B97 Re-parameterized by Hamprecht et al
C..9 BR: Becke-Roussel Exchange Functional
C..10 BRUEG: Becke-Roussel Exchange Functional -- Uniform Electron Gas Limit
C..11 BW: Becke-Wigner Exchange-Correlation Functional
C..12 CS1: Colle-Salvetti correlation functional
C..13 CS2: Colle-Salvetti correlation functional
C..14 DIRAC: Slater-Dirac Exchange Energy
C..15 G96: Gill's 1996 Gradient Corrected Exchange Functional
C..16 HCTH120: Handy least squares fitted functional
C..17 HCTH147: Handy least squares fitted functional
C..18 HCTH93: Handy least squares fitted functional
C..19 LTA: Local Approximation
C..20 LYP: Lee, Yang and Parr Correlation Functional
C..21 MK00: Exchange Functional for Accurate Virtual Orbital Energies
C..22 MK00B: Exchange Functional for Accurate Virtual Orbital Energies
C..23 P86:
C..24 PBEC: PBE Correlation Functional
C..25 PBEX: PBE Exchange Functional
C..26 PBEXREV: Revised PBE Exchange Functional
C..27 PW86:
C..28 PW91C: Perdew-Wang 1991 GGA Correlation Functional
C..29 PW91X: Perdew-Wang 1991 GGA Exchange Functional
C..30 PW92C: Perdew-Wang 1992 GGA Correlation Functional
C..31 STEST: Test for number of electrons
C..32 TH1: Tozer and Handy 1998
C..33 TH2:
C..34 TH3:
C..35 TH4:
C..36 THGFC:
C..37 THGFCFO:
C..38 THGFCO:
C..39 THGFL:
C..40 VSXC:
C..41 VWN3: Vosko-Wilk-Nusair (1980) III local correlation energy
C..42 VWN5: Vosko-Wilk-Nusair (1980) V local correlation energy
Index
molpro@molpro.net
Sep 24, 2008